Date
2007
Description
http://projecteuclid.org/euclid.aos/1201012971
Lien vers un document non conservé dans cette base
http://hal.archives-ouvertes.fr/hal-00363240/en/
Indexation documentaire
Probabilités et mathématiques appliquées
Subject
asymptotic distribution; LSE; MLE; completely monotone; k-monotone; splines
Nom de la revue
Annals of Statistics
Volume
35
Numéro
6
Date de publication
2007
Pages article
2536-2564
Nom de l'éditeur
Institute of Mathematical Statistics
Auteur
Balabdaoui, Fadoua
Wellner, Jon
Type
Article accepté pour publication ou publié
Résumé en anglais
We study the asymptotic behavior of the Maximum Likelihood and Least Squares estimators of a $k-$monotone density $g_0$ at a fixed point $x_0$ when $k > 2$. In \mycite{balabwell:04a}, it was proved that both estimators exist and are splines of degree $k-1$ with simple knots. These knots, which are also the jump points of the $(k-1)-$st derivative of the estimators, cluster around a point $x_0 > 0$ under the assumption that $g_0$ has a continuous $k$-th derivative in a neighborhood of $x_0$ and $(-1)^k g^{(k)}_0(x_0) > 0$. If $\tau^{-}_n$ and $\tau^{+}_n$ are two successive knots, we prove that the random ``gap'' \ $\tau^{+}_n - \tau^{-}_n $ is $O_p(n^{-1/(2k+1)})$ for any $k > 2$ if a conjecture about the upper bound on the error in a particular Hermite interpolation via odd-degree splines holds. Based on the order of the gap, the asymptotic distribution of the Maximum Likelihood and Least Squares estimators can be established. We find that the $j-$th derivative of the estimators at $x_0$ converges at the rate $n^{-(k-j)/(2k+1)}$ for $j=0, \ldots, k-1$. The limiting distribution depends on an almost surely uniquely defined stochastic process $H_k$ that stays above (below) the $k$-fold integral of Brownian motion plus a deterministic drift, when $k$ is even (odd).