• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Estimation of a k-monotone density: limit distribution theory and the Spline connection

Thumbnail
Date
2007
Notes
http://projecteuclid.org/euclid.aos/1201012971
Link to item file
http://hal.archives-ouvertes.fr/hal-00363240/en/
Dewey
Probabilités et mathématiques appliquées
Sujet
asymptotic distribution; LSE; MLE; completely monotone; k-monotone; splines
Journal issue
Annals of Statistics
Volume
35
Number
6
Publication date
2007
Article pages
2536-2564
Publisher
Institute of Mathematical Statistics
DOI
http://dx.doi.org/10.1214/009053607000000262
URI
https://basepub.dauphine.fr/handle/123456789/3455
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Balabdaoui, Fadoua
Wellner, Jon
Type
Article accepté pour publication ou publié
Abstract (EN)
We study the asymptotic behavior of the Maximum Likelihood and Least Squares estimators of a $k-$monotone density $g_0$ at a fixed point $x_0$ when $k > 2$. In \mycite{balabwell:04a}, it was proved that both estimators exist and are splines of degree $k-1$ with simple knots. These knots, which are also the jump points of the $(k-1)-$st derivative of the estimators, cluster around a point $x_0 > 0$ under the assumption that $g_0$ has a continuous $k$-th derivative in a neighborhood of $x_0$ and $(-1)^k g^{(k)}_0(x_0) > 0$. If $\tau^{-}_n$ and $\tau^{+}_n$ are two successive knots, we prove that the random ``gap'' \ $\tau^{+}_n - \tau^{-}_n $ is $O_p(n^{-1/(2k+1)})$ for any $k > 2$ if a conjecture about the upper bound on the error in a particular Hermite interpolation via odd-degree splines holds. Based on the order of the gap, the asymptotic distribution of the Maximum Likelihood and Least Squares estimators can be established. We find that the $j-$th derivative of the estimators at $x_0$ converges at the rate $n^{-(k-j)/(2k+1)}$ for $j=0, \ldots, k-1$. The limiting distribution depends on an almost surely uniquely defined stochastic process $H_k$ that stays above (below) the $k$-fold integral of Brownian motion plus a deterministic drift, when $k$ is even (odd).

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.