Limit distribution theory for maximum likelihood estimation of a log-concave density
Balabdaoui, Fadoua; Rufibach, Kaspar; Wellner, Jon (2009), Limit distribution theory for maximum likelihood estimation of a log-concave density, Annals of Statistics, 37, 3, p. 1299-1331. http://dx.doi.org/10.1214/08-AOS609
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00363228/en/Date
2009Journal name
Annals of StatisticsVolume
37Number
3Publisher
Institute of Mathematical Statistics
Pages
1299-1331
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study the asymptotic behavior of the Maximum Likelihood estimator (MLE) of a density $f_0 = \exp \varphi_0$ where $\varphi_0$ is a concave function on $\mathbb{R}$. Existence, form, characterizations and uniform rate of convergence of this so-called log--concave density estimator are given in \cite{rufibach_06_diss} and \cite{duembgen_rufibach_06}. It turns out that the problem of identifying the limiting distribution of the estimator is connected to that of the least squares estimator of a convex density on $[0, \infty)$, since in both estimation problems a specific characterization of the estimators in terms of distribution functions is (up to sign) the same. We find that the limiting local behavior depends on the \corr{second and third derivatives} at $0$ of $H_k$, the outer envelope of the integrated Brownian motion process plus a drift term depending on the number of vanishing derivatives of the true log--concave density at the estimation point. Furthermore, we establish the limiting distribution for the weak convergence of the first location of the maximum of the MLE to the true mode. Numerical simulations using the R--package \cite{logcondens} were performed to generate samples from the limiting distributions and calculate estimates of their extreme quantiles.Subjects / Keywords
asymptotic distribution; log--concave density estimation; integral of Brownian motion; maximum likelihood; nonparametric estimation; shape constraintsRelated items
Showing items related by title and author.
-
Balabdaoui, Fadoua; Jankowski, Hanna; Rufibach, Kaspar; Pavlides, Marios (2013) Article accepté pour publication ou publié
-
Balabdaoui, Fadoua; Wellner, Jon (2007) Article accepté pour publication ou publié
-
Balabdaoui, Fadoua; Wellner, Jon (2014) Article accepté pour publication ou publié
-
Wellner, Jon; Balabdaoui, Fadoua (2010) Article accepté pour publication ou publié
-
Balabdaoui, Fadoua (2014) Article accepté pour publication ou publié