• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Limit distribution theory for maximum likelihood estimation of a log-concave density

Balabdaoui, Fadoua; Rufibach, Kaspar; Wellner, Jon (2009), Limit distribution theory for maximum likelihood estimation of a log-concave density, Annals of Statistics, 37, 3, p. 1299-1331. http://dx.doi.org/10.1214/08-AOS609

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00363228/en/
Date
2009
Journal name
Annals of Statistics
Volume
37
Number
3
Publisher
Institute of Mathematical Statistics
Pages
1299-1331
Publication identifier
http://dx.doi.org/10.1214/08-AOS609
Metadata
Show full item record
Author(s)
Balabdaoui, Fadoua
Rufibach, Kaspar
Wellner, Jon
Abstract (EN)
We study the asymptotic behavior of the Maximum Likelihood estimator (MLE) of a density $f_0 = \exp \varphi_0$ where $\varphi_0$ is a concave function on $\mathbb{R}$. Existence, form, characterizations and uniform rate of convergence of this so-called log--concave density estimator are given in \cite{rufibach_06_diss} and \cite{duembgen_rufibach_06}. It turns out that the problem of identifying the limiting distribution of the estimator is connected to that of the least squares estimator of a convex density on $[0, \infty)$, since in both estimation problems a specific characterization of the estimators in terms of distribution functions is (up to sign) the same. We find that the limiting local behavior depends on the \corr{second and third derivatives} at $0$ of $H_k$, the outer envelope of the integrated Brownian motion process plus a drift term depending on the number of vanishing derivatives of the true log--concave density at the estimation point. Furthermore, we establish the limiting distribution for the weak convergence of the first location of the maximum of the MLE to the true mode. Numerical simulations using the R--package \cite{logcondens} were performed to generate samples from the limiting distributions and calculate estimates of their extreme quantiles.
Subjects / Keywords
asymptotic distribution; log--concave density estimation; integral of Brownian motion; maximum likelihood; nonparametric estimation; shape constraints

Related items

Showing items related by title and author.

  • Thumbnail
    Asymptotics of the discrete log-concave maximum likelihood estimator and related applications 
    Balabdaoui, Fadoua; Jankowski, Hanna; Rufibach, Kaspar; Pavlides, Marios (2013) Article accepté pour publication ou publié
  • Thumbnail
    Estimation of a k-monotone density: limit distribution theory and the Spline connection 
    Balabdaoui, Fadoua; Wellner, Jon (2007) Article accepté pour publication ou publié
  • Thumbnail
    Chernoff’s density is log-concave 
    Balabdaoui, Fadoua; Wellner, Jon (2014) Article accepté pour publication ou publié
  • Thumbnail
    Estimation of a k-monotone density: characterizations, consistency and minimax lower bounds 
    Wellner, Jon; Balabdaoui, Fadoua (2010) Article accepté pour publication ou publié
  • Thumbnail
    Global convergence of the log-concave MLE when the true distribution is geometric 
    Balabdaoui, Fadoua (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo