Show simple item record

dc.contributor.authorHauray, Maxime
dc.contributor.authorJabin, Pierre-Emmanuel
dc.date.accessioned2010-02-12T15:50:15Z
dc.date.available2010-02-12T15:50:15Z
dc.date.issued2007
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/3449
dc.description.abstractfrOn démontre la convergence pour tout temps d'une approximation de l'equation de Vlasov par un système de particules sans régularisation du champ, ceci pour des potentiels singuliers, avec une force du type $1/|x|^{\alpha}$, pour \alpha plus petit que 1.en
dc.language.isoenen
dc.subjectDérivation d'équations cinétiquesen
dc.subjectsystème de particulesen
dc.subjectEquation de Vlasoven
dc.subject.ddc520en
dc.titleN-particles approximation of the Vlasov equations with singular potentialen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenWe prove the convergence in any time interval of a point-particle approximation of the Vlasov equation by particles initially equally separated for a force in 1/|x|α, with $$\alpha \leqq 1$$. We introduce discrete versions of the L ∞ norm and time averages of the force-field. The core of the proof is to show that these quantities are bounded and that consequently the minimal distance between particles in the phase space is bounded from below.en
dc.relation.isversionofjnlnameArchive for Rational Mechanics and Analysis
dc.relation.isversionofjnlvol183en
dc.relation.isversionofjnlissue3en
dc.relation.isversionofjnldate2007-03
dc.relation.isversionofjnlpages489-524en
dc.relation.isversionofdoihttp://dx.doi.org/10.1007/s00205-006-0021-9en
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00000670/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherSpringeren
dc.subject.ddclabelSciences connexes (physique, astrophysique)en


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record