dc.contributor.author | Hauray, Maxime | |
dc.contributor.author | Jabin, Pierre-Emmanuel | |
dc.date.accessioned | 2010-02-12T15:50:15Z | |
dc.date.available | 2010-02-12T15:50:15Z | |
dc.date.issued | 2007 | |
dc.identifier.uri | https://basepub.dauphine.fr/handle/123456789/3449 | |
dc.description.abstractfr | On démontre la convergence pour tout temps d'une approximation de l'equation de Vlasov par un système de particules sans régularisation du champ, ceci pour des potentiels singuliers, avec une force du type $1/|x|^{\alpha}$, pour \alpha plus petit que 1. | en |
dc.language.iso | en | en |
dc.subject | Dérivation d'équations cinétiques | en |
dc.subject | système de particules | en |
dc.subject | Equation de Vlasov | en |
dc.subject.ddc | 520 | en |
dc.title | N-particles approximation of the Vlasov equations with singular potential | en |
dc.type | Article accepté pour publication ou publié | |
dc.description.abstracten | We prove the convergence in any time interval of a point-particle approximation of the Vlasov equation by particles initially equally separated for a force in 1/|x|α, with $$\alpha \leqq 1$$. We introduce discrete versions of the L ∞ norm and time averages of the force-field. The core of the proof is to show that these quantities are bounded and that consequently the minimal distance between particles in the phase space is bounded from below. | en |
dc.relation.isversionofjnlname | Archive for Rational Mechanics and Analysis | |
dc.relation.isversionofjnlvol | 183 | en |
dc.relation.isversionofjnlissue | 3 | en |
dc.relation.isversionofjnldate | 2007-03 | |
dc.relation.isversionofjnlpages | 489-524 | en |
dc.relation.isversionofdoi | http://dx.doi.org/10.1007/s00205-006-0021-9 | en |
dc.identifier.urlsite | http://hal.archives-ouvertes.fr/hal-00000670/en/ | en |
dc.description.sponsorshipprivate | oui | en |
dc.relation.isversionofjnlpublisher | Springer | en |
dc.subject.ddclabel | Sciences connexes (physique, astrophysique) | en |