• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

N-particles approximation of the Vlasov equations with singular potential

Thumbnail
Date
2007
Link to item file
http://hal.archives-ouvertes.fr/hal-00000670/en/
Dewey
Sciences connexes (physique, astrophysique)
Sujet
Dérivation d'équations cinétiques; système de particules; Equation de Vlasov
Journal issue
Archive for Rational Mechanics and Analysis
Volume
183
Number
3
Publication date
03-2007
Article pages
489-524
Publisher
Springer
DOI
http://dx.doi.org/10.1007/s00205-006-0021-9
URI
https://basepub.dauphine.fr/handle/123456789/3449
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Hauray, Maxime
Jabin, Pierre-Emmanuel
Type
Article accepté pour publication ou publié
Abstract (FR)
On démontre la convergence pour tout temps d'une approximation de l'equation de Vlasov par un système de particules sans régularisation du champ, ceci pour des potentiels singuliers, avec une force du type $1/|x|^{\alpha}$, pour \alpha plus petit que 1.
Abstract (EN)
We prove the convergence in any time interval of a point-particle approximation of the Vlasov equation by particles initially equally separated for a force in 1/|x|α, with $$\alpha \leqq 1$$. We introduce discrete versions of the L ∞ norm and time averages of the force-field. The core of the proof is to show that these quantities are bounded and that consequently the minimal distance between particles in the phase space is bounded from below.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.