• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

N-particles approximation of the Vlasov equations with singular potential

Hauray, Maxime; Jabin, Pierre-Emmanuel (2007), N-particles approximation of the Vlasov equations with singular potential, Archive for Rational Mechanics and Analysis, 183, 3, p. 489-524. http://dx.doi.org/10.1007/s00205-006-0021-9

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00000670/en/
Date
2007
Journal name
Archive for Rational Mechanics and Analysis
Volume
183
Number
3
Publisher
Springer
Pages
489-524
Publication identifier
http://dx.doi.org/10.1007/s00205-006-0021-9
Metadata
Show full item record
Author(s)
Hauray, Maxime
Jabin, Pierre-Emmanuel
Abstract (FR)
On démontre la convergence pour tout temps d'une approximation de l'equation de Vlasov par un système de particules sans régularisation du champ, ceci pour des potentiels singuliers, avec une force du type $1/|x|^{\alpha}$, pour \alpha plus petit que 1.
Abstract (EN)
We prove the convergence in any time interval of a point-particle approximation of the Vlasov equation by particles initially equally separated for a force in 1/|x|α, with $$\alpha \leqq 1$$. We introduce discrete versions of the L ∞ norm and time averages of the force-field. The core of the proof is to show that these quantities are bounded and that consequently the minimal distance between particles in the phase space is bounded from below.
Subjects / Keywords
Dérivation d'équations cinétiques; système de particules; Equation de Vlasov

Related items

Showing items related by title and author.

  • Thumbnail
    On Liouville Transport Equation with Force Field in BVloc 
    Hauray, Maxime (2004) Article accepté pour publication ou publié
  • Thumbnail
    Deux remarques sur les flots généralisés d'équations différentielles ordinaires 
    Hauray, Maxime; Le Bris, Claude; Lions, Pierre-Louis (2007) Article accepté pour publication ou publié
  • Thumbnail
    Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation 
    Malrieu, Florent; Guillin, Arnaud; Bolley, François (2010) Article accepté pour publication ou publié
  • Thumbnail
    The two limits of the Schrödinger equation in the semi-classical approximation: discerned and non-discerned particles in classical mechanics 
    Gondran, Alexandre; Gondran, Michel (2011) Communication / Conférence
  • Thumbnail
    Propagation of chaos for the 2D viscous vortex model 
    Mischler, Stéphane; Hauray, Maxime; Fournier, Nicolas (2014) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo