• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Momentum conserving model with anomalous thermal conductivity in low dimension

Basile, Giada; Bernardin, Cédric; Olla, Stefano (2006), Momentum conserving model with anomalous thermal conductivity in low dimension, Physical Review Letters, 96, p. 204-303. http://dx.doi.org/10.1103/PhysRevLett.96.204303

Type
Article accepté pour publication ou publié
Date
2006
Journal name
Physical Review Letters
Volume
96
Publisher
American Physical Society
Pages
204-303
Publication identifier
http://dx.doi.org/10.1103/PhysRevLett.96.204303
Metadata
Show full item record
Author(s)
Basile, Giada

Bernardin, Cédric

Olla, Stefano cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Anomalous large thermal conductivity has been observed numerically and experimentally in one and two dimensional systems. All explicitly solvable microscopic models proposed to date did not explain this phenomenon and there is an open debate about the role of conservation of momentum. We introduce a model whose thermal conductivity diverges in dimension 1 and 2 if momentum is conserved, while it remains finite in dimension $d\ge 3$. We consider a system of harmonic oscillators perturbed by a non-linear stochastic dynamics conserving momentum and energy. We compute explicitly the time correlation function of the energy current $C_J(t)$, and we find that it behaves, for large time, like $t^{-d/2}$ in the unpinned cases, and like $t^{-d/2-1}$ when an on site harmonic potential is present. Consequently thermal conductivity is finite if $d\ge 3$ or if an on-site potential is present, while it is infinite in the other cases. This result clarifies the role of conservation of momentum in the anomalous thermal conductivity in low dimensions.
Subjects / Keywords
Thermal conductivity

Related items

Showing items related by title and author.

  • Thumbnail
    Thermal Conductivity for a Momentum Conserving Model 
    Olla, Stefano; Bernardin, Cédric; Basile, Giada (2009) Article accepté pour publication ou publié
  • Thumbnail
    Thermal Conductivity in Harmonic Lattices with Random Collisions 
    Basile, Giada; Bernardin, Cédric; Jara, Milton; Komorowski, Tomasz; Olla, Stefano (2016) Chapitre d'ouvrage
  • Thumbnail
    Anomalous transport and relaxation in classical one-dimensional models 
    Lepri, Stefano; Delfini, L.; Livi, Roberto; Basile, Giada; Olla, Stefano (2007) Article accepté pour publication ou publié
  • Thumbnail
    Energy Diffusion in Harmonic System with Conservative Noise 
    Olla, Stefano; Basile, Giada (2014) Article accepté pour publication ou publié
  • Thumbnail
    Diffusion limit for a kinetic equation with a thermostatted interface 
    Basile, Giada; Komorowski, Tomasz; Olla, Stefano (2019) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo