• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Openness of the Set of Games with a Unique Correlated Equilibrium

Thumbnail
View/Open
2005-11-24-1270.pdf (256.8Kb)
Date
2006-06
Collection title
Cahiers du Laboratoire d'Econométrie, Ecole Polytechnique
Collection Id
2005-028
Dewey
Probabilités et mathématiques appliquées
Sujet
Equilibre quasi-strict; Quasi-Strict Equilibrium; Linear Duality; Unique Equilibrium; Equilibre correlé; Dualité linéaire; Equilibre unique
URI
https://basepub.dauphine.fr/handle/123456789/3231
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Viossat, Yannick
Type
Document de travail / Working paper
Item number of pages
17
Abstract (FR)
La question que cet article cherche à résoudre est de savoir si le fait d'avoir un équilibre unique (ou un nombre donné d'équilibre) est une propriété robuste à la perturbation des paiements. Cette question est étudiée pour des jeux sous forme normale, et à la fois pour le concept d'équilibre de Nash et pour celui d'équibre corrélé. Nous montrons que l'ensemble des jeux finis à n-joueurs ayant un unique équilibre corrélé est ouvert, ce qui n'est pas vrai pour l'équilibre de Nash quand n>2. Le lemme crucial est qu'un équilibre corrélé unique est un équilibre de Nash quasi-strict. Des résultats liés sont également présentés. Nous montrons notamment que les jeux à deux joueurs et à somme nulle génériques ont un unique équilibre corrélé, et étudions le caractère ouvert de divers ensembles de jeux définis par le nombre et les propriétés de leurs équilibres (équilibres stricts, quasi-strict, symétriques, etc.).
Abstract (EN)
We investigate whether having a unique equilibrium (or a given number of equilibria) is robust to perturbation of the payoffs, both for Nash equilibrium and correlated equilibrium. We show that the set of n-player finite normal form games with a unique correlated equilibrium is open, while this is not true of Nash equilibrium for n>2. The crucial lemma is that a unique correlated equilibrium is a quasi-strict Nash equilibrium. Related results are studied. For instance, we show that generic two-person zero-sum games have a unique correlated equilibrium and that, while the set of symmetric bimatrix games with a unique symmetric Nash equilibrium is not open, the set of symmetric bimatrix games with a unique and quasi-strict symmetric Nash equilibrium is.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.