• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model

Fernandez, Javier; Escobedo, Miguel; Dolbeault, Jean; Blanchet, Adrien (2010), Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model, Journal of Mathematical Analysis and Applications, 361, 2, p. 533-542. http://dx.doi.org/10.1016/j.jmaa.2009.07.034

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00349216/fr/
Date
2010
Journal name
Journal of Mathematical Analysis and Applications
Volume
361
Number
2
Publisher
Elsevier
Pages
533-542
Publication identifier
http://dx.doi.org/10.1016/j.jmaa.2009.07.034
Metadata
Show full item record
Author(s)
Fernandez, Javier
Escobedo, Miguel
Dolbeault, Jean cc
Blanchet, Adrien
Abstract (EN)
The Keller-Segel system describes the collective motion of cells that are attracted by a chemical substance and are able to emit it. In its simplest form, it is a conservative drift-diffusion equation for the cell density coupled to an elliptic equation for the chemo-attractant concentration. This paper deals with the rate of convergence towards a unique stationary state in self-similar variables, which describes the intermediate asymptotics of the solutions in the original variables. Although it is known that solutions globally exist for any mass less $8\pi\,$, a smaller mass condition is needed in our approach for proving an exponential rate of convergence in self-similar~variables.
Subjects / Keywords
Intermediate Asymptotics; Self-similar Solution; Drift-diffusion; Chemotaxis; Keller-Segel Model; Entropy; Free Energy; Rate of Convergence; Heat Kernel

Related items

Showing items related by title and author.

  • Thumbnail
    Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions 
    Blanchet, Adrien; Dolbeault, Jean; Perthame, Benoît (2006) Article accepté pour publication ou publié
  • Thumbnail
    Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane 
    Campos Serrano, Juan; Dolbeault, Jean (2014) Article accepté pour publication ou publié
  • Thumbnail
    Optimal critical mass in the two dimensional Keller–Segel model in R2 
    Dolbeault, Jean; Perthame, Benoît (2004) Article accepté pour publication ou publié
  • Thumbnail
    The two-dimensional Keller-Segel model after blow-up 
    Schmeiser, Christian; Dolbeault, Jean (2009) Article accepté pour publication ou publié
  • Thumbnail
    Uniqueness and long time asymptotic for the Keller-Segel equation: The Parabolic–Elliptic Case 
    Fernandez , Giani Egana; Mischler, Stéphane (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo