Show simple item record

dc.contributor.authorImbert, Cyril
HAL ID: 9368
ORCID: 0000-0002-1290-8257
dc.date.accessioned2010-01-26T18:07:16Z
dc.date.available2010-01-26T18:07:16Z
dc.date.issued2011
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/3149
dc.descriptionThis second version [of the WP version]includes additional results about quadratic non-linearities and a comparison with (and extension of) recent results.en
dc.language.isoenen
dc.subjectviscosity solutionsen
dc.subjectsingular elliptic equationen
dc.subjectAlexandrov-Bakelman-Pucci estimateen
dc.subjectnon-divergence formen
dc.subjectDegenerate fully nonlinear elliptic equationen
dc.subjectweak Harnack inequalityen
dc.subjectlocal maximum principleen
dc.subjectHarnack inequalityen
dc.subjectHölder regularityen
dc.subject.ddc519en
dc.titleAlexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate/singular fully non-linear elliptic equationsen
dc.typeArticle accepté pour publication ou publié
dc.description.abstractenIn this paper, we study fully non-linear elliptic equations in non-divergence form which can be degenerate when ``the gradient is small''. Typical examples are either equations involving the $m$-Laplace operator or Bellman-Isaacs equations from stochastic control problems. We establish an Alexandroff-Bakelman-Pucci estimate and we prove a Harnack inequality for viscosity solutions of such degenerate elliptic equations.en
dc.relation.isversionofjnlnameJournal of Differential Equations
dc.relation.isversionofjnlvol250
dc.relation.isversionofjnlissue3
dc.relation.isversionofjnldate2011
dc.relation.isversionofjnlpages1553-1574
dc.relation.isversionofdoihttp://dx.doi.org/10.1016/j.jde.2010.07.005
dc.identifier.urlsitehttp://hal.archives-ouvertes.fr/hal-00366901/en/en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherElsevier
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record