Global existence for rough differential equations under linear growth conditions
Gubinelli, Massimiliano; Lejay, Antoine (2009-05), Global existence for rough differential equations under linear growth conditions. https://basepub.dauphine.fr/handle/123456789/3051
Type
Document de travail / Working paperExternal document link
http://hal.archives-ouvertes.fr/hal-00384327/en/Date
2009-05Pages
20 pages
Metadata
Show full item recordAbstract (EN)
We prove existence of global solutions for differential equations driven by a geometric rough path under the condition that the vector fields have linear growth. We show by an explicit counter-example that the linear growth condition is not sufficient if the driving rough path is not geometric. This settle a long-standing open question in the theory of rough paths. So in the geometric setting we recover the usual sufficient condition for differential equation. The proof rely on a simple mapping of the differential equation from the Euclidean space to a manifold to obtain a rough differential equation with bounded coefficients.Subjects / Keywords
Rough differential equation; Global existence; Change of variable formula; Explosion in a finite time; Rough path; Geometric rough pathsRelated items
Showing items related by title and author.
-
Deya, Aurélien; Gubinelli, Massimiliano; Tindel, Samy (2012) Article accepté pour publication ou publié
-
Gubinelli, Massimiliano (2012) Article accepté pour publication ou publié
-
Tindel, Samy; Gubinelli, Massimiliano (2010) Article accepté pour publication ou publié
-
Gubinelli, Massimiliano (2011) Chapitre d'ouvrage
-
Neklyudov, M.; Gubinelli, Massimiliano; Brzeniak, Z. (2013) Article accepté pour publication ou publié