• français
    • English
  • français 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Equilibrium Pricing Bound on Option Prices

Thumbnail
View/Open
Jouini_46.pdf (266.1Kb)
Date
2008
Notes
Le fichier attaché est une version également éditée dans les Cahiers de la Chaire "Les Particuliers face aux Risques" de l'Institut de Finance de Dauphine, cahier n° 21, mai 2008
Dewey
Economie financière
Sujet
Conic duality; Semi-infinite programming; Option bounds; Equilibrium prices
JEL code
D50
Journal issue
Mathematics and Financial Economics
Volume
1
Number
3-4
Publication date
06-2008
Article pages
251-281
Publisher
Springer
DOI
http://dx.doi.org/10.1007/s11579-008-0010-x
URI
https://basepub.dauphine.fr/handle/123456789/30
Collections
  • CEREMADE : Publications
  • Chaire Les Particuliers face aux risques : Analyse et réponse des marchés
Metadata
Show full item record
Author
Jouini, Elyès
Chazal, Marie
Type
Article accepté pour publication ou publié
Abstract (EN)
We consider the problem of valuing European options in a complete market but with incomplete data. Typically, when the underlying asset dynamics is not specified, the martingale probability measure is unknown. Given a consensus on the actual distribution of the underlying price at maturity, we derive an upper bound on the call option price by putting two kind of restrictions on the pricing probability measure. First, we put a restriction on the second risk-neutral moment of the underlying asset terminal value. Second, from equilibrium pricing arguments one can put a monotonicity restriction on the Radon-Nikodym density of the pricing probability with respect to the true probability measure. This density is restricted to be a nonincreasing function of the underlying price at maturity. The bound appears then as the solution of a constrained optimization problem and we adopt a duality approach to solve it. We obtain a weak sufficient condition for strong duality and existence for the dual problem to hold, for options defined by general payoff functions. Explicit bounds are provided for the call option. Finally, we provide a numerical example.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.