• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Limit theorems for additive functionals of a Markov chain

Thumbnail
Date
2009
Link to item file
http://projecteuclid.org/euclid.aoap/1259158772
Dewey
Probabilités et mathématiques appliquées
Sujet
martingale approximations; fractional heat equation; Boltzmann phonon equation; Stable processes
Journal issue
The Annals of Applied Probability
Volume
19
Number
6
Publication date
12-2009
Article pages
2270-2300
Publisher
Institute of Mathematical Statistics
DOI
http://dx.doi.org/10.1214/09-AAP610
URI
https://basepub.dauphine.fr/handle/123456789/2997
Collections
  • CEREMADE : Publications
Metadata
Show full item record
Author
Olla, Stefano
Komorowski, Tomasz
Jara, Milton
Type
Article accepté pour publication ou publié
Abstract (EN)
Consider a Markov chain $\{X_n\}_{n\ge 0}$ with an ergodic probability measure $\pi$. Let $\Psi$ a function on the state space of the chain, with $\alpha$-tails with respect to $\pi$, $\alpha\in (0,2)$. We find sufficient conditions on the probability transition to prove convergence in law of $N^{1/\alpha}\sum_n^N \Psi(X_n)$ to a $\alpha$-stable law. ``Martingale approximation'' approach and ``coupling'' approach give two different sets of conditions. We extend these results to continuous time Markov jump processes $X_t$, whose skeleton chain satisfies our assumptions. If waiting time between jumps has finite expectation, we prove convergence of $N^{-1/\alpha}\int_0^{Nt} V(X_s) ds$ to a stable process. In the case of waiting times with infinite average, we prove convergence to a Mittag-Leffler process.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.