KPZ formula for log-infinitely divisible multifractal random measures
Rhodes, Rémi; Vargas, Vincent (2011), KPZ formula for log-infinitely divisible multifractal random measures, ESAIM. Probability and Statistics, 15, p. 358-371. http://dx.doi.org/10.1051/ps/2010007
Type
Article accepté pour publication ou publiéExternal document link
http://hal.archives-ouvertes.fr/hal-00293878/en/Date
2011Journal name
ESAIM. Probability and StatisticsVolume
15Publisher
EDP Sciences
Pages
358-371
Publication identifier
Metadata
Show full item recordAbstract (EN)
We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [1]. If M is a non degenerate multifractal measure with associated metric ρ(x, y) = M ([x, y]) and structure function ζ , we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a mea- surable set K and the Hausdorff dimension dimρ H with respect to ρ of the same set: ζ (dimρ (K)) = dimH (K). Our results can be extended to higher dimensions in the log normal case: inspired by quantum gravity in dimension 2, we consider the 2 dimensional case.Subjects / Keywords
Multifractal processes.; Random measures; Hausdorff dimensionsRelated items
Showing items related by title and author.
-
Rhodes, Rémi; Vargas, Vincent (2013) Article accepté pour publication ou publié
-
Rhodes, Rémi; Vargas, Vincent (2010) Article accepté pour publication ou publié
-
Allez, Romain; Rhodes, Rémi; Vargas, Vincent (2013) Article accepté pour publication ou publié
-
Sohier, Julien; Vargas, Vincent; Rhodes, Rémi (2014) Article accepté pour publication ou publié
-
Rhodes, Rémi; Vargas, Vincent (2009) Article accepté pour publication ou publié