• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

KPZ formula for log-infinitely divisible multifractal random measures

Rhodes, Rémi; Vargas, Vincent (2011), KPZ formula for log-infinitely divisible multifractal random measures, ESAIM. Probability and Statistics, 15, p. 358-371. http://dx.doi.org/10.1051/ps/2010007

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00293878/en/
Date
2011
Journal name
ESAIM. Probability and Statistics
Volume
15
Publisher
EDP Sciences
Pages
358-371
Publication identifier
http://dx.doi.org/10.1051/ps/2010007
Metadata
Show full item record
Author(s)
Rhodes, Rémi
Vargas, Vincent
Abstract (EN)
We consider the continuous model of log-infinitely divisible multifractal random measures (MRM) introduced in [1]. If M is a non degenerate multifractal measure with associated metric ρ(x, y) = M ([x, y]) and structure function ζ , we show that we have the following relation between the (Euclidian) Hausdorff dimension dimH of a mea- surable set K and the Hausdorff dimension dimρ H with respect to ρ of the same set: ζ (dimρ (K)) = dimH (K). Our results can be extended to higher dimensions in the log normal case: inspired by quantum gravity in dimension 2, we consider the 2 dimensional case.
Subjects / Keywords
Multifractal processes.; Random measures; Hausdorff dimensions

Related items

Showing items related by title and author.

  • Thumbnail
    Optimal transportation for multifractal random measures and applications 
    Rhodes, Rémi; Vargas, Vincent (2013) Article accepté pour publication ou publié
  • Thumbnail
    Multidimensional Multifractal Random Measures 
    Rhodes, Rémi; Vargas, Vincent (2010) Article accepté pour publication ou publié
  • Thumbnail
    Lognormal star-scale invariant random measures 
    Allez, Romain; Rhodes, Rémi; Vargas, Vincent (2013) Article accepté pour publication ou publié
  • Thumbnail
    Levy multiplicative chaos and star scale invariant random measures 
    Sohier, Julien; Vargas, Vincent; Rhodes, Rémi (2014) Article accepté pour publication ou publié
  • Thumbnail
    Scaling limits for symmetric Itô-Lévy processes in random medium 
    Rhodes, Rémi; Vargas, Vincent (2009) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo