• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity

Mouhot, Clément; Fournier, Nicolas (2009), On the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity, Communications in Mathematical Physics, 289, 3, p. 803-824. http://dx.doi.org/10.1007/s00220-009-0807-3

Type
Article accepté pour publication ou publié
External document link
http://hal.archives-ouvertes.fr/hal-00135991/en/
Date
2009
Journal name
Communications in Mathematical Physics
Volume
289
Number
3
Publisher
Springer
Pages
803-824
Publication identifier
http://dx.doi.org/10.1007/s00220-009-0807-3
Metadata
Show full item record
Author(s)
Mouhot, Clément
Fournier, Nicolas
Abstract (EN)
We prove an inequality on the Kantorovich-Rubinstein distance -which can be seen as a particular case of a Wasserstein metric- between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, but with a moderate angular singularity. Our method is in the spirit of [7]. We deduce some well-posedness and stability results in the physically relevant cases of hard and moderately soft potentials. In the case of hard potentials, we relax the regularity assumption of [6], but we need stronger assumptions on the tail of the distribution (namely some exponential decay). We thus obtain the first uniqueness result for measure initial data. In the case of moderately soft potentials, we prove existence and uniqueness assuming only that the initial datum has finite energy and entropy (for very moderately soft potentials), plus sometimes an additionnal moment condition. We thus improve significantly on all previous results, where weighted Sobolev spaces were involved.
Subjects / Keywords
Kantorovich-Rubinstein distance; Boltzmann equation without cutoff; uniqueness; Wasserstein distance; long-range interaction

Related items

Showing items related by title and author.

  • Thumbnail
    Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials. 
    Desvillettes, Laurent; Mouhot, Clément (2007) Article accepté pour publication ou publié
  • Thumbnail
    Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials 
    Mouhot, Clément (2006) Article accepté pour publication ou publié
  • Thumbnail
    Regularity theory for the spatially homogeneous Boltzmann equation with cut-off 
    Mouhot, Clément; Villani, Cédric (2004) Article accepté pour publication ou publié
  • Thumbnail
    Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions 
    Desvillettes, Laurent; Mouhot, Clément (2009) Article accepté pour publication ou publié
  • Thumbnail
    About $L^p$ estimates for the spatially homogeneous Boltzmann equation 
    Desvillettes, Laurent; Mouhot, Clément (2005) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo