Show simple item record

dc.contributor.authorChiola, Giovanni
dc.contributor.authorDutheillet, Claude
dc.contributor.authorFranceschinis, Giuliana
dc.contributor.authorHaddad, Serge
dc.date.accessioned2010-01-14T10:21:08Z
dc.date.available2010-01-14T10:21:08Z
dc.date.issued1993
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/2929
dc.language.isoenen
dc.subjectMultiprocessor systemen
dc.subjectModel symmetryen
dc.subjectMultiprocessoren
dc.subjectPetri neten
dc.subjectMarkov chainen
dc.subjectPerformance evaluationen
dc.subjectComputational complexityen
dc.subject.ddc519en
dc.titleStochastic Well-Formed Colored Nets and Symmetric Modelling Applicationsen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherUniv. Torino, dip. informatica, Torino;Italie
dc.description.abstractenThe class of stochastic well-formed colored nets (SWN's) was defined as a syntactic restriction of stochastic high-level nets. The interest of the introduction of restrictions in the model definition is the possibility of exploiting the symbolic reachability graph (SRG) to reduce the complexity of Markovian performance evaluation with respect to classical Petri net techniques. It turns out that SWN's allow the representation of any color function in a structured form, so that any unconstrained high-level net can be transformed into a well-formed net. Moreover, most constructs useful for the modeling of distributed computer systems and architectures directly match the «well-formed» restriction, without any need of transformationen
dc.relation.isversionofjnlnameIEEE Transactions on Computers
dc.relation.isversionofjnlvol42en
dc.relation.isversionofjnlissue11en
dc.relation.isversionofjnldate1993
dc.relation.isversionofjnlpages1343-1360en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherInstitute of Electrical and Electronics Engineersen
dc.subject.ddclabelProbabilités et mathématiques appliquéesen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record