• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
  •   Accueil
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail - Request a copy

Differential approximation results for the Steiner tree problem

Monnot, Jérôme; Demange, Marc; Paschos, Vangelis (2003), Differential approximation results for the Steiner tree problem, Applied Mathematics Letters, 16, 5, p. 733-739. http://dx.doi.org/10.1016/S0893-9659(03)00075-2

Type
Article accepté pour publication ou publié
Date
2003
Nom de la revue
Applied Mathematics Letters
Volume
16
Numéro
5
Éditeur
Elsevier
Pages
733-739
Identifiant publication
http://dx.doi.org/10.1016/S0893-9659(03)00075-2
Métadonnées
Afficher la notice complète
Auteur(s)
Monnot, Jérôme cc
Demange, Marc
Paschos, Vangelis
Résumé (EN)
We study the approximability of three versions of the Steiner tree problem. For the first one where the input graph is only supposed connected, we show that it is not approximable within better than |V N−ε for any ε ε (0, 1), where V and N are the vertex-set of the input graph and the set of terminal vertices, respectively. For the second of the Steiner tree versions considered, the one where the input graph is supposed complete and the edge distances are arbitrary, we prove that it can be differentially approximated within 1/2. For the third one defined on complete graphs with edge distances 1 or 2, we show that it is differentially approximable within 0.82. Also, extending the result of Bern and Plassmann [1], we show that the Steiner tree problem with edge lengths 1 and 2 is MaxSNP-complete even in the case where IVY less-than-or-equals, slant rINI, for any r > 0. This allows us to finally show that the Steiner tree problem with edge lengths 1 and 2 cannot by approximated by polynomial time differential approximation schemata.
Mots-clés
Complexity; Algorithms; Algorithmical approximation

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Complexity and approximation results for the min weighted node coloring problem 
    Escoffier, Bruno; Demange, Marc; Paschos, Vangelis; de Werra, Dominique; Monnot, Jérôme (2008) Chapitre d'ouvrage
  • Vignette de prévisualisation
    Differential approximation results for the traveling salesman problem with distances 1 and 2 
    Toulouse, Sophie; Paschos, Vangelis; Monnot, Jérôme (2003) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Differential approximation results for the traveling salesman problem with distances 1 and 2 
    Monnot, Jérôme; Paschos, Vangelis; Toulouse, Sophie (2001) Communication / Conférence
  • Vignette de prévisualisation
    Bridging gap between standard and differential polynomial approximation: the case of bin-packing 
    Demange, Marc; Monnot, Jérôme; Paschos, Vangelis (1999) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    The hypocoloring problem: complexity and approximability results when the chromatic number is small 
    de Werra, Dominique; Demange, Marc; Monnot, Jérôme; Paschos, Vangelis (2004) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo