• français
    • English
  • English 
    • français
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
BIRD Home

Browse

This CollectionBy Issue DateAuthorsTitlesSubjectsJournals BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesSubjectsJournals

My Account

Login

Statistics

View Usage Statistics

Randomized multi-level lot-sizing heuristics for general product structures

Thumbnail
Date
2003
Dewey
Recherche opérationnelle
Sujet
Lot-sizing; Material requirements planning; Inventory management; Heuristics
Journal issue
European Journal of Operational Research
Volume
148
Number
1
Publication date
07-2003
Article pages
211-228
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/S0377-2217(02)00403-4
URI
https://basepub.dauphine.fr/handle/123456789/2776
Collections
  • LAMSADE : Publications
Metadata
Show full item record
Author
Dellaert, Nico
Jeunet, Jully
Type
Article accepté pour publication ou publié
Abstract (EN)
We consider the multi-level lot-sizing (MLLS) problem as it occurs in material requirements planning systems, with no capacity constraints and a time-invariant cost structure. Many heuristics have been developed for this problem, as well as optimal solution methods which are applicable only to small instances. Few heuristic approaches however have been specifically built to address the MLLS problem with general product structures of large size. In this paper we develop randomized versions of the popular Wagner–Whitin algorithm [Management Science 5 (1958) 89] and the Silver–Meal technique [Production and Inventory Management 14 (1973) 64] which can easily handle product structures with numerous common parts. We also provide randomized variants of more sophisticated MLLS heuristics such as Graves’ multi-pass method [TIMS Studies in the Management Sciences 16 (1981) 95], a technique due to Bookbinder and Koch [Journal of Operations Management 9 (1990) 7] and that of Heinrich and Schneeweiss [Multi-Stage Production Planning and Control, Lecture Notes in Economics and Mathematical Systems, Springer, 1986, p. 150]. The resultant heuristics are based on original randomized set-up cost modifications designed to account for interdependencies among stages. The effectiveness of the proposed algorithms is tested through a series of simulation experiments reproducing common industrial settings (product structures of large size with various degrees of complexity over long horizons). It is concluded that the randomized version of the Graves algorithm outperforms existing heuristics in most situations. The randomization of the Wagner–Whitin algorithm proved to be the best single-pass method while only requiring a low computational effort.

  • Accueil Bibliothèque
  • Site de l'Université Paris-Dauphine
  • Contact
SCD Paris Dauphine - Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

 Content on this site is licensed under a Creative Commons 2.0 France (CC BY-NC-ND 2.0) license.