Show simple item record

dc.contributor.authorEkim, Tinaz
dc.contributor.authorPaschos, Vangelis
dc.date.accessioned2009-12-03T11:20:56Z
dc.date.available2009-12-03T11:20:56Z
dc.date.issued2004
dc.identifier.urihttps://basepub.dauphine.fr/handle/123456789/2611
dc.language.isoenen
dc.subjectVertex coveringen
dc.subjectSet coveringen
dc.subjectHierarchyen
dc.subjectDifferential approximation ratioen
dc.subjectApproximability preserving reductionsen
dc.subject.ddc003en
dc.titleApproximation preserving reductions for set covering, vertex covering and independent set hierarchies under differential approximationen
dc.typeArticle accepté pour publication ou publié
dc.contributor.editoruniversityotherEcole Polytechnique de Lausanne;Suisse
dc.description.abstractenThe notion of approximability preserving reductions between different problems deserves special attention in approximability theory. These kinds of reductions allow us polynomial time conversion of some already known 'good' approximation algorithms for some NP-hard problems into ones for some other NP-hard problems. In this context, we consider reductions for set covering and vertex covering hierarchies. Our results are then extended to hitting set and independent set hierarchies. Here, we adopt the differential approximation ratio that has the natural property to be stable under affine transformations of the objective function of a problem.en
dc.relation.isversionofjnlnameInternational Journal of Computer Mathematics
dc.relation.isversionofjnlvol81en
dc.relation.isversionofjnlissue5en
dc.relation.isversionofjnldate2004
dc.relation.isversionofjnlpages569-582en
dc.relation.isversionofdoihttp://dx.doi.org/10.1080/00207160410001688592en
dc.description.sponsorshipprivateouien
dc.relation.isversionofjnlpublisherTaylor & Francisen
dc.subject.ddclabelRecherche opérationnelleen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record