• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Truth-Tracking via Approval Voting: Size Matters

Allouche, Tahar; Lang, Jérôme; Yger, Florian (2022), Truth-Tracking via Approval Voting: Size Matters, Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22), AAAI Press : Palo Alto (USA), p. 4768-4775. 10.1609/aaai.v36i5.20403

Type
Communication / Conférence
External document link
https://hal.archives-ouvertes.fr/hal-03861664
Date
2022
Conference title
The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)
Conference date
2022-02
Conference country
France
Book title
Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)
Publisher
AAAI Press
Published in
Palo Alto (USA)
ISBN
978-1-57735-876-3
Pages
4768-4775
Publication identifier
10.1609/aaai.v36i5.20403
Metadata
Show full item record
Author(s)
Allouche, Tahar
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Lang, Jérôme
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Yger, Florian cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Epistemic social choice aims at unveiling a hidden ground truth given votes, which are interpreted as noisy signals about it. We consider here a simple setting where votes consist of approval ballots: each voter approves a set of alternatives which they believe can possibly be the ground truth. Based on the intuitive idea that more reliable votes contain fewer alternatives, we define several noise models that are approval voting variants of the Mallows model. The likelihood-maximizing alternative is then characterized as the winner of a weighted approval rule, where the weight of a ballot decreases with its cardinality. We have conducted an experiment on three image annotation datasets; they conclude that rules based on our noise model outperform standard approval voting; the best performance is obtained by a variant of the Condorcet noise model.
Subjects / Keywords
Game Theory And Economic Paradigms (GTEP)

Related items

Showing items related by title and author.

  • Thumbnail
    Possible Winners in Approval Voting 
    Barrot, Nathanaël; Gourvès, Laurent; Lang, Jérôme; Monnot, Jérôme (2013) Communication / Conférence
  • Thumbnail
    Manipulation of Hamming-based Approval Voting for Multiple Referenda and Committee Elections 
    Barrot, Nathanaël; Lang, Jérôme; Yokoo, Makoto (2017) Communication / Conférence
  • Thumbnail
    Conditional and Sequential Approval Voting on Combinatorial Domains 
    Barrot, Nathanaël; Lang, Jérôme (2016) Communication / Conférence
  • Thumbnail
    Approval Voting for Committee Elections : a General Family of Rules 
    Barrot, Nathanaël; Lang, Jérôme; Ries, Bernard (2014) Communication / Conférence
  • Thumbnail
    Approval voting under dichotomous preferences: A catalogue of characterizations 
    Brandl, Florian; Peters, Dominik (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo