• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Statistical inference for rough volatility: Minimax Theory

Chong, Carsten; Hoffmann, Marc; Liu, Yanghui; Szymanski, Grégoire; Rosenbaum, Mathieu (2022), Statistical inference for rough volatility: Minimax Theory. https://basepub.dauphine.psl.eu/handle/123456789/24557

View/Open
2210.01214.pdf (527.4Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
54
Metadata
Show full item record
Author(s)
Chong, Carsten
Columbia University, New York, USA
Hoffmann, Marc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Liu, Yanghui
Szymanski, Grégoire
Centre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Rosenbaum, Mathieu
Centre de Mathématiques Appliquées - Ecole Polytechnique [CMAP]
Abstract (EN)
Rough volatility models have gained considerable interest in the quantitative finance community in recent years. In this paradigm, the volatility of the asset price is driven by a fractional Brownian motion with a small value for the Hurst parameter H. In this work, we provide a rigorous statistical analysis of these models. To do so, we establish minimax lower bounds for parameter estimation and design procedures based on wavelets attaining them. We notably obtain an optimal speed of convergence of n −1/(4H+2) for estimating H based on n sampled data, extending results known only for the easier case H > 1/2 so far. We therefore establish that the parameters of rough volatility models can be inferred with optimal accuracy in all regimes.
Subjects / Keywords
wavelets; scaling; minimax optimality; pre-averaging; iterated estimation procedure; Rough volatility; fractional Brownian motion

Related items

Showing items related by title and author.

  • Thumbnail
    Statistical inference for rough volatility: Central limit theorems 
    Chong, Carsten; Hoffmann, Marc; Liu, Yanghui; Rosenbaum, Mathieu; Szymanski, Grégoire (2022) Document de travail / Working paper
  • Thumbnail
    Statistical inference for partial differential equations 
    Grenier, Emmanuel; Hoffmann, Marc; Lelièvre, Tony; Louvet, Violaine; Prieur, Clémentine; Rachdi, Nabil; Vigneaux, Paul (2014) Communication / Conférence
  • Thumbnail
    Optimization and statistical methods for high frequency finance 
    Hoffmann, Marc; Labadie, Mauricio; Lehalle, Charles-Albert; Pagès, Gilles; Pham, Huyên; Rosenbaum, Mathieu (2014) Article accepté pour publication ou publié
  • Thumbnail
    Early stopping for statistical inverse problems via truncated SVD estimation 
    Blanchard, Gilles; Hoffman, Marc; Reiß, Markus (2018) Article accepté pour publication ou publié
  • Thumbnail
    Optimal adaptation for early stopping in statistical inverse problems 
    Blanchard, Gilles; Hoffmann, Marc; Reiß, Markus (2018) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo