• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A nonlinear conjugate gradient method with complexity guarantees and its application to nonconvex regression

Chan-Renous-Legoubin, Rémi; Royer, Clément W. (2022), A nonlinear conjugate gradient method with complexity guarantees and its application to nonconvex regression, EURO Journal on Computational Optimization, 10, p. 100044. 10.1016/j.ejco.2022.100044

View/Open
1-s2.0-S219244062200020X-main.pdf (2.265Mb)
Type
Article accepté pour publication ou publié
External document link
https://arxiv.org/pdf/2201.08568.pdf
Date
2022
Journal name
EURO Journal on Computational Optimization
Volume
10
Publisher
Springer
Pages
100044
Publication identifier
10.1016/j.ejco.2022.100044
Metadata
Show full item record
Author(s)
Chan-Renous-Legoubin, Rémi
Royer, Clément W.
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Nonlinear conjugate gradients are among the most popular techniques for solving continuous optimization problems. Although these schemes have long been studied from a global convergence standpoint, their worst-case complexity properties have yet to be fully understood, especially in the nonconvex setting. In particular, it is unclear whether nonlinear conjugate gradient methods possess better guarantees than first-order methods such as gradient descent. Meanwhile, recent experiments have shown impressive performance of standard nonlinear conjugate gradient techniques on certain nonconvex problems, even when compared with methods endowed with the best known complexity guarantees.In this paper, we propose a nonlinear conjugate gradient scheme based on a simple line-search paradigm and a modified restart condition. These two ingredients allow for monitoring the properties of the search directions, which is instrumental in obtaining complexity guarantees. Our complexity results illustrate the possible discrepancy between nonlinear conjugate gradient methods and classical gradient descent. A numerical investigation on nonconvex robust regression problems as well as a standard benchmark illustrate that the restarting condition can track the behavior of a standard implementation.
Subjects / Keywords
Optimization and Control

Related items

Showing items related by title and author.

  • Thumbnail
    Trust-Region Newton-CG with Strong Second-Order Complexity Guarantees for Nonconvex Optimization 
    Curtis, F. E.; Robinson, D. P.; Royer, Clément; Wright, S. J. (2019) Article accepté pour publication ou publié
  • Thumbnail
    A stochastic Levenberg-Marquardt method using random models with complexity results 
    Bergou, E. H.; Diouane, Y.; Kungurtsev, V.; Royer, Clément W. (2022) Article accepté pour publication ou publié
  • Thumbnail
    A Liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up 
    Zaag, Hatem; Nouaili, Nejla (2010) Article accepté pour publication ou publié
  • Thumbnail
    Spectral Pollution and How to Avoid It (With Applications to Dirac and Periodic Schrödinger Operators) 
    Lewin, Mathieu; Séré, Eric (2009) Article accepté pour publication ou publié
  • Thumbnail
    Gradient estimates for a degenerate parabolic equation with gradient absorption and applications 
    Bartier, Jean-Philippe; Laurençot, Philippe (2007) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo