Stochastic Primal Dual Hybrid Gradient Algorithm with Adaptive Step-Sizes
Chambolle, Antonin; Delplancke, Claire; Ehrhardt, Matthias; Schönlieb, Carola-Bibiane; Tang, Junqi (2023), Stochastic Primal Dual Hybrid Gradient Algorithm with Adaptive Step-Sizes. https://basepub.dauphine.psl.eu/handle/123456789/24517
Voir/Ouvrir
Type
Document de travail / Working paperDate
2023Titre de la collection
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLVille d’édition
Paris
Pages
24
Métadonnées
Afficher la notice complèteAuteur(s)
Chambolle, Antonin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Delplancke, Claire
EDF R&D [EDF R&D ]
Ehrhardt, Matthias
Department of Mathematical Sciences [Bath]
Schönlieb, Carola-Bibiane
Department of Applied Mathematics and Theoretical Physics [Cambridge] [DAMTP]
Tang, Junqi
Department of Applied Mathematics and Theoretical Physics [Cambridge] [DAMTP]
Résumé (EN)
In this work we propose a new primal-dual algorithm with adaptive step-sizes. The stochastic primal-dual hybrid gradient (SPDHG) algorithm with constant step-sizes has become widely applied in large-scale convex optimization across many scientific fields due to its scalability. While the product of the primal and dual step-sizes is subject to an upper-bound in order to ensure convergence, the selection of the ratio of the step-sizes is critical in applications. Upto-now there is no systematic and successful way of selecting the primal and dual step-sizes for SPDHG. In this work, we propose a general class of adaptive SPDHG (A-SPDHG) algorithms, and prove their convergence under weak assumptions. We also propose concrete parametersupdating strategies which satisfy the assumptions of our theory and thereby lead to convergent algorithms. Numerical examples on computed tomography demonstrate the effectiveness of the proposed schemes.Publications associées
Affichage des éléments liés par titre et auteur.
-
Hurault, Samuel; Chambolle, Antonin; Leclaire, Arthur; Papadakis, Nicolas (2023) Document de travail / Working paper
-
Chambolle, Antonin; Contreras, Juan (2022) Article accepté pour publication ou publié
-
Eusebio, Augusto; Figueira, José; Ehrgott, Matthias (2009) Article accepté pour publication ou publié
-
Chambolle, Antonin; Tovey, Robert (2022) Article accepté pour publication ou publié
-
Chambolle, Antonin; Novaga, Matteo (2022) Document de travail / Working paper