Show simple item record

hal.structure.identifierBiostatistique et Processus Spatiaux [BioSP]
dc.contributor.authorCoville, Jérôme
HAL ID: 6487
ORCID: 0000-0002-7364-366X
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorBouin, Emeric
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorLegendre, Guillaume
dc.date.accessioned2023-03-02T08:39:05Z
dc.date.available2023-03-02T08:39:05Z
dc.date.issued2023
dc.identifier.urihttps://basepub.dauphine.psl.eu/handle/123456789/24509
dc.language.isoenen
dc.subjectintegro-differential operatorsen
dc.subjectfractional Laplace operatoren
dc.subjectaccelerationen
dc.subjectspreadingen
dc.subject.ddc510en
dc.titleA simple flattening lower bound for solutions to some linear integrodifferential equationsen
dc.typeDocument de travail / Working paper
dc.description.abstractenEstimates on the asymptotic behaviour of solution to linear integro-differential equations are fundamental in understanding the dynamics occuring in many nonlocal evolution problems. They are usually derived by using precise decay estimates on the heat kernel of the considered diffusion process. In this note, we show that for some generic jump diffusion and particular initial data, one can derive a lower bound of the asymptotic behaviour of the solution using a simple PDE argument. This is viewed as an independant preliminary brick to study invasion phenomena in nonlinear reaction diffusion problems.en
dc.publisher.cityParisen
dc.identifier.citationpages7en
dc.relation.ispartofseriestitleCahier de recherche CEREMADE, Université Paris Dauphine-PSLen
dc.subject.ddclabelMathématiquesen
dc.identifier.citationdate2023
dc.description.ssrncandidatenon
dc.description.halcandidatenonen
dc.description.readershipnon-rechercheen
dc.description.audienceInternationalen
dc.date.updated2023-03-02T08:35:34Z
hal.author.functionaut
hal.author.functionaut
hal.author.functionaut


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record