• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser

Hurault, Samuel; Chambolle, Antonin; Leclaire, Arthur; Papadakis, Nicolas (2023), A relaxed proximal gradient descent algorithm for convergent plug-and-play with proximal denoiser. https://basepub.dauphine.psl.eu/handle/123456789/24490

View/Open
2301.13731.pdf (606.3Kb)
Type
Document de travail / Working paper
Date
2023
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
21
Metadata
Show full item record
Author(s)
Hurault, Samuel
Institut de Mathématiques de Bordeaux [IMB]
Chambolle, Antonin cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Leclaire, Arthur
Institut de Mathématiques de Bordeaux [IMB]
Papadakis, Nicolas
Institut de Mathématiques de Bordeaux [IMB]
Abstract (EN)
This paper presents a new convergent Plug-and-Play (PnP) algorithm. PnP methods are efficient iterative algorithms for solving image inverse problems formulated as the minimization of the sum of a data-fidelity term and a regularization term. PnP methods perform regularization by plugging a pre-trained denoiser in a proximal algorithm, such as Proximal Gradient Descent (PGD). To ensure convergence of PnP schemes, many works study specific parametrizations of deep denoisers. However, existing results require either unverifiable or suboptimal hypotheses on the denoiser, or assume restrictive conditions on the parameters of the inverse problem. Observing that these limitations can be due to the proximal algorithm in use, we study a relaxed version of the PGD algorithm for minimizing the sum of a convex function and a weakly convex one. When plugged with a relaxed proximal denoiser, we show that the proposed PnP-α PGD algorithm converges for a wider range of regularization parameters, thus allowing more accurate image restoration.

Related items

Showing items related by title and author.

  • Thumbnail
    Stochastic Primal Dual Hybrid Gradient Algorithm with Adaptive Step-Sizes 
    Chambolle, Antonin; Delplancke, Claire; Ehrhardt, Matthias; Schönlieb, Carola-Bibiane; Tang, Junqi (2023) Document de travail / Working paper
  • Thumbnail
    Optimal Transport with Proximal Splitting 
    Oudet, Edouard; Peyré, Gabriel; Papadakis, Nicolas (2014) Article accepté pour publication ou publié
  • Thumbnail
    An Algorithm for Total Variation Minimization and Applications 
    Chambolle, Antonin (2004) Article accepté pour publication ou publié
  • Thumbnail
    Korn and Poincaré-Korn inequalities for functions with a small jump set 
    Cagnetti, Filippo; Chambolle, Antonin; Scardia, Lucia (2022) Article accepté pour publication ou publié
  • Thumbnail
    Total Variation Denoising and Support Localization of the Gradient 
    Chambolle, Antonin; Duval, Vincent; Peyré, Gabriel; Poon, Clarice (2016) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo