• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Aide
  • Connexion
  • Langue 
    • Français
    • English
Consulter le document 
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Thèses
  • Consulter le document
  •   Accueil
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Thèses
  • Consulter le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Afficher

Toute la baseCentres de recherche & CollectionsAnnée de publicationAuteurTitreTypeCette collectionAnnée de publicationAuteurTitreType

Mon compte

Connexion

Enregistrement

Statistiques

Documents les plus consultésStatistiques par paysAuteurs les plus consultés
Thumbnail

Modèles couplés en milieux poreux : transport réactif et fractures

Amir, Laila (2008), Modèles couplés en milieux poreux : transport réactif et fractures, thèse de doctorat préparée sous la direction de Kern, Michel; Roberts, Jean, Université Paris Dauphine, INRIA, 131 p.

Voir/Ouvrir
theseLailaAMIR.pdf (1.656Mb)
Type
Thèse
Date
2008
Pages
131
Métadonnées
Afficher la notice complète
Auteur(s)
Amir, Laila
Sous la direction de
Kern, Michel; Roberts, Jean
Résumé (FR)
Cette thèse porte sur la modélisation numérique pour l'écoulement et le transport dans les milieux poreux. Nous présentons une nouvelle méthode de couplage entre les réations chimiques et le transport en utilisant une méthode de Newton-Krylov, et nous étudions un modèle d'écoulement qui traite l'intersection des fractures par une méthode de décomposition de domaine.Ce travail est divisé en trois parties: la première partie est une analyse de différents schémas numériques pour la discrétisation du problème d'advection-diffusion, notament par une technique de séparation d'opérateurs, ainsi que leur mise en oeuvre informatique dans un code industriel.La deuxième partie, qui est la contribution majeure de cette thèse, est consacrée à la modélisation et l'implémentation d'une méthode de couplage globale pour le transport réactif. Le système couplé transport-chimie est décrit, après discrétisation en temps, par un système d'équations non linéaires. La taille du système sous-jacent, à savoir le nombre de points de grille multiplié par le nombre d'espèces chimiques, interdit la résolution du système linéaire par une méthode directe. Pour remédier à cette difficulté, nous utilisons une méthode de Newton-Krylov qui évite de former et de factoriser la matrice Jacobienne.Dans la dernière partie, nous présentons un modèle d'écoulement dans un milieu fracturé tridimentionnel, basée sur une méhode de décomposition de domaine, et qui traite l'intersection des fracures. Nous démontrons l'existence et l'unicité de la solution, et nous validons le modèle par des tests numériques.
Résumé (EN)
This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts : the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport- chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain deccomposition method. The fractures are treated as interfaces between subdomains. We show existence and uniqueness of the solution, and we validate the model by numerical tests.
Mots-clés
matériaux poreux; modèles mathématiques; simulation par ordinateur

Publications associées

Affichage des éléments liés par titre et auteur.

  • Vignette de prévisualisation
    Queue-reactive Hawkes models for the order flow 
    Wu, Peng; Rambaldi, Marcello; Muzy, Jean-François; Bacry, Emmanuel (2019) Document de travail / Working paper
  • Vignette de prévisualisation
    The reactive volatility model 
    Valeyre, Sébastien; Grebenkov, Denis; Aboura, Sofiane; Liu, Qian (2013-11) Article accepté pour publication ou publié
  • Vignette de prévisualisation
    Homogénéisation quantitative de milieux aléatoires : environnements dégénérés et modèle d’interface 
    Dario, Paul (2019-06-18) Thèse
  • Vignette de prévisualisation
    Modélisation mathématique et numérique des comportements sociaux en milieu incertain. Application à l'épidémiologie 
    Laguzet, Laetitia (2015-11) Thèse
  • Vignette de prévisualisation
    Transport optimal de mesures positives : modèles, méthodes numériques, applications 
    Chizat, Lénaïc (2017-11-10) Thèse
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Tél. : 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo