Concentration for Coulomb gases on compact manifolds
García-Zelada, David (2019), Concentration for Coulomb gases on compact manifolds, Electronic Communications in Probability, 24, p. 1-18. 10.1214/19-ECP211
View/ Open
Type
Article accepté pour publication ou publiéDate
2019Journal name
Electronic Communications in ProbabilityVolume
24Publisher
Institute of Mathematical Statistics
Pages
1-18
Publication identifier
Metadata
Show full item recordAbstract (EN)
We study the non-asymptotic behavior of a Coulomb gas on a compact Riemannian manifold. This gas is a symmetric n-particle Gibbs measure associated to the two-body interaction energy given by the Green function. We encode such a particle system by using an empirical measure. Our main result is a concentration inequality in Kantorovich-Wasserstein distance inspired from the work of Chafaï, Hardy and Maïda on the Euclidean space. Their proof involves large deviation techniques together with an energy-distance comparison and a regularization procedure based on the superharmonicity of the Green function. This last ingredient is not available on a manifold. We solve this problem by using the heat kernel and its short-time asymptotic behavior.Subjects / Keywords
concentration of measure; Coulomb gas; empirical measure; Gibbs measure; Green function; heat kernel; Interacting particle system; Singular potentialRelated items
Showing items related by title and author.
-
García-Zelada, David (2019-06-28) Thèse
-
García-Zelada, David (2019) Article accepté pour publication ou publié
-
Chafaï, Djalil; García-Zelada, David; Jung, Paul (2020) Article accepté pour publication ou publié
-
Bordenave, Charles; Chafaï, Djalil; García-Zelada, David (2021) Article accepté pour publication ou publié
-
Chafaï, Djalil; García-Zelada, David; Jung, Paul (2022) Article accepté pour publication ou publié