• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Sampling using Adaptive Regenerative Processes

McKimm, Hector; Wang, Andi Q.; Pollock, Murray; Robert, Christian P.; Roberts, Gareth O. (2022), Sampling using Adaptive Regenerative Processes. https://basepub.dauphine.psl.eu/handle/123456789/24097

View/Open
samplingusing.pdf (1.023Mb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
34
Metadata
Show full item record
Author(s)
McKimm, Hector
Department of Statistics [Warwick]
Wang, Andi Q.
Department of Statistics [Warwick]
Pollock, Murray
UNIVERSITY OF NEWCASTLE GBR
Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Roberts, Gareth O.
Department of Statistics [Warwick]
Abstract (EN)
Enriching Brownian Motion with regenerations from a fixed regeneration distribution μ at a particular regeneration rate κ results in a Markov process that has a target distribution π as its invariant distribution. We introduce a method for adapting the regeneration distribution, by adding point masses to it. This allows the process to be simulated with as few regenerations as possible, which can drastically reduce computational cost. We establish convergence of this self-reinforcing process and explore its effectiveness at sampling from a number of target distributions. The examples show that our adaptive method allows regeneration-enriched Brownian Motion to be used to sample from target distributions for which simulation under a fixed regeneration distribution is computationally intractable.
Subjects / Keywords
Adaptive algorithm; Markov process; MCMC; Normalizing constant; Regeneration distribution; Restore sampler; Sampling; Simulation

Related items

Showing items related by title and author.

  • Thumbnail
    Estimation of cosmological parameters using adaptive importance sampling 
    Wraith, Darren; Cappé, Olivier; Cardoso, Jean-François; Fort, Gersende; Prunet, Simon; Kilbinger, Martin; Benabed, Karim; Robert, Christian P. (2009-03) Article accepté pour publication ou publié
  • Thumbnail
    Using parallel computation to improve Independent Metropolis-Hastings based estimation 
    Smith, Murray H.; Robert, Christian P.; Jacob, Pierre E. (2011) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive Importance Sampling in General Mixture Classes 
    Cappé, Olivier; Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2008) Article accepté pour publication ou publié
  • Thumbnail
    Adaptive Multiple Importance Sampling 
    Robert, Christian P.; Mira, Antonietta; Marin, Jean-Michel; Cornuet, Jean-Marie (2012) Article accepté pour publication ou publié
  • Thumbnail
    Convergence of adaptive mixtures of importance sampling schemes 
    Douc, Randal; Guillin, Arnaud; Marin, Jean-Michel; Robert, Christian P. (2007) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo