• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Trade Selection with Supervised Learning and Optimal Coordinate Ascent (OCA)

Saltiel, David; Benhamou, Eric; Laraki, Rida; Atif, Jamal (2021), Trade Selection with Supervised Learning and Optimal Coordinate Ascent (OCA), Mining Data for Financial Applications, Springer International Publishing : Berlin Heidelberg, p. 1-15. 10.1007/978-3-030-66981-2_1

Type
Communication / Conférence
Date
2021
Conference title
5th ECML PKDD Workshop, MIDAS 2020
Conference date
2020-09
Conference city
Ghent
Conference country
Belgium
Book title
Mining Data for Financial Applications
Publisher
Springer International Publishing
Published in
Berlin Heidelberg
ISBN
978-3-030-66980-5
Number of pages
151
Pages
1-15
Publication identifier
10.1007/978-3-030-66981-2_1
Metadata
Show full item record
Author(s)
Saltiel, David
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
Benhamou, Eric
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Laraki, Rida cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Atif, Jamal
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Can we dynamically extract some information and strong relationship between some financial features in order to select some financial trades over time? Despite the advent of representation learning and end-to-end approaches, mainly through deep learning, feature selection remains a key point in many machine learning scenarios. This paper introduces a new theoretically motivated method for feature selection. The approach that fits within the family of embedded methods, casts the feature selection conundrum as a coordinate ascent optimization with variables dependencies materialized by block variables. Thanks to a limited number of iterations, it proves efficiency for gradient boosting methods, implemented with XGBoost. In case of convex and smooth functions, we are able to prove that the convergence rate is polynomial in terms of the dimension of the full features set. We provide comparisons with state of the art methods, Recursive Feature Elimination and Binary Coordinate Ascent and show that this method is competitive when selecting some financial trades.
JEL
C6 - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

Related items

Showing items related by title and author.

  • Thumbnail
    Trade Selection with Supervised Learning and OCA 
    Saltiel, David; Benhamou, Eric (2018) Document de travail / Working paper
  • Thumbnail
    Feature selection with optimal coordinate ascent (OCA) 
    Saltiel, David; Benhamou, Eric (2018-12) Document de travail / Working paper
  • Thumbnail
    Deep Reinforcement Learning (DRL) for portfolio allocation 
    Benhamou, Éric; Saltiel, David; Ohana, Jean-Jacques; Atif, Jamal; Laraki, Rida Communication / Conférence
  • Thumbnail
    BCMA-ES: a conjugate prior Bayesian optimization view 
    Benhamou, Éric; Saltiel, David; Laraki, Rida; Atif, Jamal (2020) Document de travail / Working paper
  • Thumbnail
    NGO-GM: Natural Gradient Optimization for Graphical Models 
    Benhamou, Éric; Atif, Jamal; Laraki, Rida; Saltiel, David (2020) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo