• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

From rough to multifractal volatility: The log S-fBM model

Wu, Peng; Muzy, Jean-François; Bacry, Emmanuel (2022), From rough to multifractal volatility: The log S-fBM model, Physica A: Statistical Mechanics and its Applications, 604. 10.1016/j.physa.2022.127919

View/Open
2201.09516.pdf (1.502Mb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Physica A: Statistical Mechanics and its Applications
Volume
604
Publication identifier
10.1016/j.physa.2022.127919
Metadata
Show full item record
Author(s)
Wu, Peng
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Muzy, Jean-François cc
Sciences pour l'environnement [SPE]
Bacry, Emmanuel cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We introduce a family of random measures MH,T ( dt), namely log S-fBM, suchthat, for H > 0, MH,T ( dt) = e ωH,T (t) dt where ωH,T (t) is a Gaussian process that can be considered as a stationary version of an H-fractional Brownian motion. Moreover, when H → 0, one has MH,T ( dt) → MfT ( dt) (in the weak sense) where MfT ( dt) is the celebrated log-normal multifractal random measure (MRM). Thus, this model allows us to consider, within the same framework, the two popular classes of ultifractal (H = 0) and rough volatility (0 < H < 1/2) models. The main properties of the log S-fBM are discussed and their estimation issues are addressed. We notably show that the direct estimation of H from the scaling properties of ln(MH,T ([t, t+τ ])), at fixed τ , can lead to strongly over-estimating the value of H. We propose a better GMM estimation method which is shown to be valid in the high-frequency asymptotic regime. When applied to a large set of empirical volatility data, we observe that stock indices have values around H = 0.1 while individual stocks are characterized by values of H that can be very close to 0 and thus well described by a MRM. We also bring evidence that unlike the log-volatility variance ν 2 whose estimation appears to be poorly reliable (though used widely in the rough volatility literature), the estimation of the so-called ”intermittency coefficient” λ 2, which is the product of ν 2 and the Hurst exponent H, appears to be far more reliable leading to values
Subjects / Keywords
Rough volatility; Multifractal volatility; Fractional Brownian motion; GMM estimation; Intermittency coefficient

Related items

Showing items related by title and author.

  • Thumbnail
    Queue-reactive Hawkes models for the order flow 
    Wu, Peng; Rambaldi, Marcello; Muzy, Jean-François; Bacry, Emmanuel (2019) Document de travail / Working paper
  • Thumbnail
    Disentangling and quantifying market participant volatility contributions 
    Rambaldi, Marcello; Bacry, Emmanuel; Muzy, Jean-François (2019) Article accepté pour publication ou publié
  • Thumbnail
    Uncovering Causality from Multivariate Hawkes Integrated Cumulants 
    Achab, Massil; Bacry, Emmanuel; Gaïffas, Stéphane; Mastromatteo, Iacopo; Muzy, Jean-François (2017) Article accepté pour publication ou publié
  • Thumbnail
    Some limit theorems for Hawkes processes and application to financial statistics 
    Muzy, Jean-François; Delattre, Sylvain; Hoffmann, Marc; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
  • Thumbnail
    Modelling microstructure noise with mutually exciting point processes 
    Muzy, Jean-François; Hoffmann, Marc; Delattre, Sylvain; Bacry, Emmanuel (2013) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo