• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Pesticide concentration monitoring: Investigating spatio‐temporal patterns in left censored data

Laroche, Clément; Olteanu, Madalina; Rossi, Fabrice (2022), Pesticide concentration monitoring: Investigating spatio‐temporal patterns in left censored data, Environmetrics, p. 31. 10.1002/env.2756

View/Open
167569978762991.pdf (8.009Mb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
Environmetrics
Pages
31
Publication identifier
10.1002/env.2756
Metadata
Show full item record
Author(s)
Laroche, Clément
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Olteanu, Madalina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Rossi, Fabrice
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Monitoring pesticide concentration is very important for public authorities given the major concerns for environmental safety and the likelihood for increased public health risks. An important aspect of this process consists in locating abnormal signals, from a large amount of collected data. This kind of data is usually complex since it suffers from limits of quantification leading to left censored observations, and from the sampling procedure which is irregular in time and space across measuring stations. The present manuscript tackles precisely the issue of detecting spatio-temporal collective anomalies in pesticide concentration levels, and introduces a novel methodology for dealing with spatio-temporal heterogeneity. The latter combines a change-point detection procedure applied to the series of maximum daily values across all stations, and a clustering step aimed at a spatial segmentation of the stations. Limits of quantification are handled in the change-point procedure, by supposing an underlying left-censored parametric model, piece-wise stationary. Spatial segmentation takes into account the geographical conditions, and may be based on river network, wind directions, etc. Conditionally to the temporal segment and the spatial cluster, one may eventually analyse the data and identify contextual anomalies. The proposed procedure is illustrated in detail on a data set containing the prosulfocarb concentration levels in surface waters in Centre-Val de Loire region.
Subjects / Keywords
pesticide concentration monitoring; left censored data; change-pointdetection; anomaly detection; Pareto front; water pollution; prosulfocarb

Related items

Showing items related by title and author.

  • Thumbnail
    Challenges in anomaly and change point detection 
    Olteanu, Madalina; Rossi, Fabrice; Yger, Florian (2022) Communication / Conférence
  • Thumbnail
    Poverty and Female Homicide in Mexican Municipalities: A Bayesian Spatio-Temporal Analysis 
    Flores, Miguel; Sparks, Corey S. (2017) Document de travail / Working paper
  • Thumbnail
    Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization 
    Faigl, Jan; Olteanu, Madalina; Drchal, Jan (2022) Ouvrage
  • Thumbnail
    GPS Traking and Surveys Analysis of Tourists' Spatio-Temporal Behaviour. The case of Alghero 
    Blečić, Ivan; Canu, Dario; Cecchini, Arnaldo; Congiu, Tanja; Fancello, Giovanna; Trunfio, Giuseppe A. (2016) Communication / Conférence
  • Thumbnail
    Coupling Surveys with GPS Tracking to Explore Tourists’ Spatio-Temporal Behaviour 
    Blečić, Ivan; Canu, Dario; Cecchini, Arnaldo; Congiu, Tanja; Fancello, Giovanna; Mauro, Stefania; Sacerdotti, Sara Levi; Trunfio, Giuseppe A. (2016) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo