Subcritical bootstrap percolation via Toom contours
Hartarsky, Ivailo; Szabo, Reka (2022), Subcritical bootstrap percolation via Toom contours, Electronic Communications in Probability, 27, p. 1-13. 10.1214/22-ECP496
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
Electronic Communications in ProbabilityVolume
27Publisher
Institute of Mathematical Statistics
Pages
1-13
Publication identifier
Metadata
Show full item recordAuthor(s)
Hartarsky, Ivailo
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Szabo, Reka
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
In this note we provide an alternative proof of the fact that subcritical bootstrap percolation models have a positive critical probability in any dimension. The proof relies on a recent extension of the classical framework of Toom. This approach is not only simpler than the original multi-scale renormalisation proof of the result in two and more dimensions, but also gives significantly better bounds. As a byproduct, we improve the best known bounds for the stability threshold of Toom’s North-East-Center majority rule cellular automaton.Subjects / Keywords
bootstrap percolation; Toom rule; North-East-Center majority; critical probability; stability threshold; Toom contourRelated items
Showing items related by title and author.
-
Hartarsky, Ivailo (2022-01-07) Thèse
-
Hartarsky, Ivailo; Mezei, Tamás Róbert (2020) Article accepté pour publication ou publié
-
Hartarsky, Ivailo (2022) Article accepté pour publication ou publié
-
Hartarsky, Ivailo; N.B. de Lima, Bernardo (2022) Article accepté pour publication ou publié
-
Hartarsky, Ivailo; Szabo, Reka (2022) Article accepté pour publication ou publié