Convergence of a Lagrangian Discretization for Barotropic Fluids and Porous Media Flow
Gallouët, Thomas; Mérigot, Quentin; Natale, Andrea (2022), Convergence of a Lagrangian Discretization for Barotropic Fluids and Porous Media Flow, SIAM Journal on Mathematical Analysis, 54, 3, p. 2990-3018. 10.1137/21M1422756
View/ Open
Type
Article accepté pour publication ou publiéDate
2022Journal name
SIAM Journal on Mathematical AnalysisVolume
54Number
3Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
2990-3018
Publication identifier
Metadata
Show full item recordAuthor(s)
Gallouët, ThomasCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mérigot, Quentin
Laboratoire de Mathématiques d'Orsay [LMO]
Natale, Andrea
Laboratoire de Mathématiques d'Orsay [LMO]
Abstract (EN)
When expressed in Lagrangian variables, the equations of motion for compressible (barotropic) fluids have the structure of a classical Hamiltonian system in which the potential energy is given by the internal energy of the fluid. The dissipative counterpart of such a system coincides with the porous medium equation, which can be cast in the form of a gradient flow for the same internal energy. Motivated by these related variational structures, we propose a particle method for both problems in which the internal energy is replaced by its Moreau-Yosida regularization in the L2 sense, which can be efficiently computed as a semi-discrete optimal transport problem. Using a modulated energy argument which exploits the convexity of the problem in Eulerian variables, we prove quantitative convergence estimates towards smooth solutions. We verify such estimates by means of several numerical tests.Subjects / Keywords
barotropic Euler equations; porous medium equation; Lagrangian discretizations; optimal transportRelated items
Showing items related by title and author.
-
Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2018) Document de travail / Working paper
-
Cancès, Clément; Gallouët, Thomas; Laborde, Maxime; Monsaingeon, Léonard (2019) Article accepté pour publication ou publié
-
Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2020) Article accepté pour publication ou publié
-
Gallouët, Thomas; Mérigot, Quentin (2018) Article accepté pour publication ou publié
-
Gallouët, Thomas; Natale, Andrea; Todeschi, Gabriele (2022) Document de travail / Working paper