• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Convergence of a Lagrangian Discretization for Barotropic Fluids and Porous Media Flow

Gallouët, Thomas; Mérigot, Quentin; Natale, Andrea (2022), Convergence of a Lagrangian Discretization for Barotropic Fluids and Porous Media Flow, SIAM Journal on Mathematical Analysis, 54, 3, p. 2990-3018. 10.1137/21M1422756

View/Open
IsentropicEuler.pdf (1.069Mb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
SIAM Journal on Mathematical Analysis
Volume
54
Number
3
Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
2990-3018
Publication identifier
10.1137/21M1422756
Metadata
Show full item record
Author(s)
Gallouët, Thomas
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mérigot, Quentin
Laboratoire de Mathématiques d'Orsay [LMO]
Natale, Andrea
Laboratoire de Mathématiques d'Orsay [LMO]
Abstract (EN)
When expressed in Lagrangian variables, the equations of motion for compressible (barotropic) fluids have the structure of a classical Hamiltonian system in which the potential energy is given by the internal energy of the fluid. The dissipative counterpart of such a system coincides with the porous medium equation, which can be cast in the form of a gradient flow for the same internal energy. Motivated by these related variational structures, we propose a particle method for both problems in which the internal energy is replaced by its Moreau-Yosida regularization in the L2 sense, which can be efficiently computed as a semi-discrete optimal transport problem. Using a modulated energy argument which exploits the convexity of the problem in Eulerian variables, we prove quantitative convergence estimates towards smooth solutions. We verify such estimates by means of several numerical tests.
Subjects / Keywords
barotropic Euler equations; porous medium equation; Lagrangian discretizations; optimal transport

Related items

Showing items related by title and author.

  • Thumbnail
    Generalized compressible fluid flows and solutions of the Camassa-Holm variational model 
    Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2018) Document de travail / Working paper
  • Thumbnail
    Simulation of multiphase porous media flows with minimizing movement and finite volume schemes 
    Cancès, Clément; Gallouët, Thomas; Laborde, Maxime; Monsaingeon, Léonard (2019) Article accepté pour publication ou publié
  • Thumbnail
    Generalized compressible flows and solutions of the H(div) geodesic problem 
    Gallouët, Thomas; Natale, Andrea; Vialard, François-Xavier (2020) Article accepté pour publication ou publié
  • Thumbnail
    A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations 
    Gallouët, Thomas; Mérigot, Quentin (2018) Article accepté pour publication ou publié
  • Thumbnail
    From geodesic extrapolation to a variational BDF2 scheme for Wasserstein gradient flows 
    Gallouët, Thomas; Natale, Andrea; Todeschi, Gabriele (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo