• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Logarithmic estimates for mean-field models in dimension two and the Schrödinger–Poisson system

Dolbeault, Jean; Frank, Rupert L.; Jeanjean, Louis (2021), Logarithmic estimates for mean-field models in dimension two and the Schrödinger–Poisson system, Comptes rendus. Mathématique, 359, 10, p. 1279-1293. 10.5802/crmath.272

View/Open
log-Poisson-2.pdf (392.4Kb)
Type
Article accepté pour publication ou publié
Date
2021
Journal name
Comptes rendus. Mathématique
Volume
359
Number
10
Publisher
Elsevier
Pages
1279-1293
Publication identifier
10.5802/crmath.272
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Frank, Rupert L.
Mathematisches Institut [München] [LMU]
Jeanjean, Louis
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Abstract (EN)
In dimension two, we investigate a free energy and the ground state energy of the Schrödinger–Poisson system coupled with a logarithmic nonlinearity in terms of underlying functional inequalities which take into account the scaling invariances of the problem. Such a system can be considered as a nonlinear Schrödinger equation with a cubic but nonlocal Poisson nonlinearity, and a local logarithmic nonlinearity. Both cases of repulsive and attractive forces are considered. We also assume that there is an external potential with minimal growth at infinity, which turns out to have a logarithmic growth. Our estimates rely on new logarithmic interpolation inequalities which combine logarithmic Hardy–Littlewood–Sobolev and logarithmic Sobolev inequalities. The two-dimensional model appears as a limit case of more classical problems in higher dimensions.
Subjects / Keywords
chrödinger-Poisson system; nonlinear Schrödinger equation; mean-field coupling; Poisson equation; Newton equation; interpolation; logarithmic Hardy-Littlewood-Sobolev inequality; logarithmic Sobolev inequality

Related items

Showing items related by title and author.

  • Thumbnail
    Stability for the gravitational Vlasov-Poisson system in dimension two 
    Dolbeault, Jean; Fernandez, Javier; Sanchez, Oscar (2006) Article accepté pour publication ou publié
  • Thumbnail
    Time-dependent rescalings and Lyapunov functionals for the Vlasov-Poisson and Euler-Poisson systems, and for related models of kinetic equations, fluid dynamics and quantum physics 
    Dolbeault, Jean; Rein, Gerhard (2001) Article accepté pour publication ou publié
  • Thumbnail
    Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators 
    Esteban, Maria J.; Dolbeault, Jean; Bosi, Roberta (2008) Article accepté pour publication ou publié
  • Thumbnail
    A global approach to the Schrödinger-Poisson system: An existence result in the case of infinitely many states 
    Kavian, Otared; Mischler, Stéphane (2015) Article accepté pour publication ou publié
  • Thumbnail
    The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases 
    Lewin, Mathieu; Nam, Phan Thành; Rougerie, Nicolas (2016) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo