• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Improve Performance of Recommender System in Collaborative Learning Environment based on Learner Tracks

Tang, Qing; Abel, Marie-Hélène; Negre, Elsa (2020), Improve Performance of Recommender System in Collaborative Learning Environment based on Learner Tracks, Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - (Volume 3), SciTePress : Setúbal, p. 270-277. 10.5220/0010214702700277

View/Open
102147.pdf (407.9Kb)
Type
Communication / Conférence
External document link
https://hal.archives-ouvertes.fr/hal-03529461
Date
2020
Conference title
12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KMIS 2020 / IC3K 2020)
Conference date
2020-11
Conference city
Setúbal
Conference country
Portugal
Book title
Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - (Volume 3)
Publisher
SciTePress
Published in
Setúbal
ISBN
978-989-758-474-9
Number of pages
277
Pages
270-277
Publication identifier
10.5220/0010214702700277
Metadata
Show full item record
Author(s)
Tang, Qing
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] [Heudiasyc]
Abel, Marie-Hélène cc
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] [Heudiasyc]
Negre, Elsa
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Learning with huge amount of open educational resources is challenging, especially when variety resources come from different System of Information Systems (SoIS). How to help learners obtain appropriate resources efficiently in collaborative learning environment is still a rigorous problem of research. This paper proposes a method to calculate learner’s knowledge competency by tracking and analyzing their behaviors in a collaborative learning environment based on SoIS, and combining other basic learner’s information to build a personalized recommender system to help learners select appropriate educational resources to improve their learning efficiency.
Subjects / Keywords
Online Learning; SoIS; Collaborative Learning Environment; Recommender System; Learner Track

Related items

Showing items related by title and author.

  • Thumbnail
    Improve Performance of Recommender System in Collaborative Learning Environment based on Learner Tracks 
    Tang, Qing; Abel, Marie-Hélène; Negre, Elsa (2020) Communication / Conférence
  • Thumbnail
    Improve Learner-based Recommender System with Learner’s Mood in Online Learning Platform 
    Tang, Qing; Abel, Marie-Hélène; Negre, Elsa (2021) Communication / Conférence
  • Thumbnail
    Towards the Privacy-Preserving of Online Recommender System in Collaborative Learning Environment 
    Tang, Qing; Abel, Marie-Hélène; Negre, Elsa (2020) Communication / Conférence
  • Thumbnail
    Personalized Services in Collaborative Learning Environment Based on Learner’s Activity Records 
    Tang, Qing; Abel, Marie-Hélène; Negre, Elsa (2022) Communication / Conférence
  • Thumbnail
    A Collaborative Working Environment as an ontology-based collaborative System of Information Systems 
    Li, Siying; Abel, Marie-Hélène; Negre, Elsa (2020) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo