• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Sparse Weighted K-Means for Groups of Mixed-Type Variables

Chavent, Marie; Olteanu, Madalina; Cottrell, Marie; Lacaille, Jérôme; Mourer, Alex (2022), Sparse Weighted K-Means for Groups of Mixed-Type Variables, in Jan Faigl, Madalina Olteanu, Jan Drchal, Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, Springer International Publishing : Berlin Heidelberg, p. 1-10. 10.1007/978-3-031-15444-7_1

Type
Communication / Conférence
Date
2022
Conference title
14th International Workshop, WSOM+ 2022
Conference date
2022-07
Conference city
Prague
Conference country
Czech Republic
Book title
Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization
Book author
Jan Faigl, Madalina Olteanu, Jan Drchal
Publisher
Springer International Publishing
Published in
Berlin Heidelberg
ISBN
978-3-031-15444-7
Number of pages
119
Pages
1-10
Publication identifier
10.1007/978-3-031-15444-7_1
Metadata
Show full item record
Author(s)
Chavent, Marie cc
Méthodes avancées d’apprentissage statistique et de contrôle [ASTRAL]
Olteanu, Madalina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Cottrell, Marie
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Lacaille, Jérôme
Safran Aircraft Engines
Mourer, Alex
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Abstract (EN)
Assessing the underlying structure of a dataset is often done by training a clustering procedure on the features describing the data. In practice, while the data may be described by a large number of features, only a minority of them may be actually informative with regard to the structure. Furthermore, redundant features may also bias the clustering, whether one speaks of redundancy in the informative or the uninformative features. The present contribution aims at illustrating two sparse clustering methods designed for mixed data (made of numerical and categorical features). The proposed methods summarise redundant features into groups, and select the most relevant groups of features only in the clustering procedure. The performances and the interpretability of the sparse methods are illustrated on a real-life data set.
Subjects / Keywords
Sparse clustering; Feature clustering; Feature selection; Group of features selection; Variable importance

Related items

Showing items related by title and author.

  • Thumbnail
    Sparse Weighted K-Means for Groups of Mixed-Type Variables 
    Chavent, Marie; Olteanu, Madalina; Cottrell, Marie; Lacaille, Jérôme; Mourer, Alex (2022) Communication / Conférence
  • Thumbnail
    Sparse k-means for mixed data via group-sparse clustering 
    Chavent, Marie; Lacaille, Jerome; Mourer, Alex; Olteanu, Madalina (2020) Communication / Conférence
  • Thumbnail
    Sparse and group-sparse clustering for mixed data An illustration of the vimpclust package 
    Chavent, Marie; Lacaille, Jérôme; Mourer, Alex; Olteanu, Madalina (2022) Communication / Conférence
  • Thumbnail
    Handling Correlations in Random Forests: which Impacts on Variable Importance and Model Interpretability? 
    Chavent, Marie; Lacaille, Jerome; Mourer, Alex; Olteanu, Madalina (2021) Communication / Conférence
  • Thumbnail
    Editorial of Special Issue on WSOM+ 2017 
    Lamirel, Jean-Charles; Cottrell, Marie; Olteanu, Madalina; Lévy, Bruno (2020) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo