Nonlinear flows and optimality for functional inequalities : an extended abstract
hal.structure.identifier | CEntre de REcherches en MAthématiques de la DEcision [CEREMADE] | |
dc.contributor.author | Esteban, Maria J.
HAL ID: 738381 ORCID: 0000-0003-1700-9338 | |
dc.date.accessioned | 2023-01-23T11:10:25Z | |
dc.date.available | 2023-01-23T11:10:25Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | https://basepub.dauphine.psl.eu/handle/123456789/23802 | |
dc.language.iso | en | en |
dc.subject | Caffarelli–Kohn–Nirenberg inequalities | en |
dc.subject | Symmetry | en |
dc.subject | Symmetry breaking | en |
dc.subject | Optimal constants | en |
dc.subject | Rigidity results | en |
dc.subject | Fast diffusion equation | en |
dc.subject | Carré du champ | en |
dc.subject | Bifurcation | en |
dc.subject | Instability | en |
dc.subject | Emden–Fowler transformation | en |
dc.subject | Cylinders | en |
dc.subject | Noncompact manifolds | en |
dc.subject | Laplace–Beltrami operator | en |
dc.subject | Spectral estimates | en |
dc.subject | Keller–Lieb–Thirring estimate | en |
dc.subject | Hardy inequality | en |
dc.subject.ddc | 515 | en |
dc.title | Nonlinear flows and optimality for functional inequalities : an extended abstract | en |
dc.type | Chapitre d'ouvrage | |
dc.description.abstracten | The talk given on the occasion of the ISIAM 2016 conference was mainly about rigidity results for nonnegative solutions of semilinear elliptic equation on infinite cylinder-like domains or in the Euclidean espace and as a consequence, about optimal symmetry properties for the optimizers of the Caffarelli–Kohn–Nirenberg inequalities. This text contains the main results presented in that conference. All the results will be stated in the simple case of spherical cylinders, but similar, even if less precise, results can also be stated and proved for general cylinders generated by any compact smooth Riemannian manifold without a boundary. Other consequences from the results below are optimal estimates for the principal eigenvalue of Schrödinger operators on infinite cylinders. The text below is an extended abstract of that talk. | en |
dc.identifier.citationpages | 21-26 | en |
dc.relation.ispartofseriestitle | Industrial and Applied Mathematics | en |
dc.relation.ispartoftitle | Industrial Mathematics and Complex Systems | en |
dc.relation.ispartofeditor | Pammy Manchanda, René Lozi, Abul Hasan Siddiqi | |
dc.relation.ispartofpublname | Springer | en |
dc.relation.ispartofpublcity | Berlin Heidelberg | en |
dc.relation.ispartofdate | 2017 | |
dc.relation.ispartofpages | 357 | en |
dc.subject.ddclabel | Analyse | en |
dc.relation.ispartofisbn | 978-981-10-3757-3 | en |
dc.relation.forthcoming | non | en |
dc.identifier.doi | 10.1007/978-981-10-3758-0 | en |
dc.description.ssrncandidate | non | |
dc.description.halcandidate | non | en |
dc.description.readership | recherche | en |
dc.description.audience | International | en |
dc.date.updated | 2023-01-23T11:07:40Z | |
hal.author.function | aut |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |