• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Co-clustering based exploratory analysis of mixed-type data tables

Bouchareb, Aichetou; Boullé, Marc; Clérot, Fabrice; Rossi, Fabrice (2019), Co-clustering based exploratory analysis of mixed-type data tables, in Bruno Pinaud, Fabrice Guillet, Fabien Gandon, Christine Largeron, Advances in Knowledge Discovery and Management, Volume 8, Springer, p. 23-41. 10.1007/978-3-030-18129-1_2

View/Open
Final_Paper_10_New_Coclustering_Methodology.pdf (765.1Kb)
Type
Chapitre d'ouvrage
Date
2019
Book title
Advances in Knowledge Discovery and Management, Volume 8
Book author
Bruno Pinaud, Fabrice Guillet, Fabien Gandon, Christine Largeron
Publisher
Springer
Series title
Studies in Computational Intelligence (SCI, volume 834)
ISBN
978-3-030-18129-1
Number of pages
183
Pages
23-41
Publication identifier
10.1007/978-3-030-18129-1_2
Metadata
Show full item record
Author(s)
Bouchareb, Aichetou
Orange Labs [Lannion]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Boullé, Marc
Orange Labs [Lannion]
Clérot, Fabrice
Orange Labs [Lannion]
Rossi, Fabrice
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Co-clustering is a class of unsupervised data analysis techniques that extract the existing underlying dependency structure between the instances and variables of a data table as homogeneous blocks. Most of those techniques are limited to variables of the same type. In this paper, we propose a mixed data co-clustering method based on a two-step methodology. In the first step, all the variables are binarized according to a number of bins chosen by the analyst, by equal frequency discretization in the numerical case, or keeping the most frequent values in the categorical case. The second step applies a co-clustering to the instances and the binary variables, leading to groups of instances and groups of variable parts. We apply this methodology on several data sets and compare with the results of a Multiple Correspondence Analysis applied to the same data.

Related items

Showing items related by title and author.

  • Thumbnail
    Model Based Co-clustering of Mixed Numerical and Binary Data 
    Bouchareb, Aichetou; Boullé, Marc; Clérot, Fabrice; Rossi, Fabrice (2019) Chapitre d'ouvrage
  • Thumbnail
    Exploratory Analysis of Functional Data via Clustering and Optimal Segmentation 
    Rossi, Fabrice; Lechevallier, Yves; Hugueney, Bernard; Hébrail, Georges (2010) Article accepté pour publication ou publié
  • Thumbnail
    Clustering of symbolic data through a dissimilarity volume based measure 
    Silva, K.P.; De A. T. De Carvalho, Francisco; Csernel, Marc (2008) Communication / Conférence
  • Thumbnail
    Extension of Partitional Clustering Methods for Handling Mixed Data 
    Naija, Yosr; Chakhar, Salem; Blibech, Kaouther; Robbana, Riadh (2008) Communication / Conférence
  • Thumbnail
    Sparse and group-sparse clustering for mixed data An illustration of the vimpclust package 
    Chavent, Marie; Lacaille, Jérôme; Mourer, Alex; Olteanu, Madalina (2022) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo