• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Corrigendum to: “On the eigenvalues of operators with gaps. Application to Dirac operators” [J. Funct. Anal. 174 (1) (2000) 208–226]

Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2023), Corrigendum to: “On the eigenvalues of operators with gaps. Application to Dirac operators” [J. Funct. Anal. 174 (1) (2000) 208–226], Journal of Functional Analysis, 284, 1. 10.1016/j.jfa.2022.109651

View/Open
Erratum_gaps.pdf (163.6Kb)
Type
Article accepté pour publication ou publié
Date
2023
Journal name
Journal of Functional Analysis
Volume
284
Number
1
Publisher
Elsevier
Publication identifier
10.1016/j.jfa.2022.109651
Metadata
Show full item record
Author(s)
Dolbeault, Jean cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Esteban, Maria J. cc
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Séré, Eric
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
This paper is devoted to a general min-max characterization of the eigenvalues in a gap of the essential spectrum of a self-adjoint unbounded operator. We prove an abstract theorem, then we apply it to the case of Dirac operators with a Coulomb-like potential. The result is optimal for the Coulomb potential.
Subjects / Keywords
Self-adjoint operators; Dirac operators; Min-max principle; Eigenvalues

Related items

Showing items related by title and author.

  • Thumbnail
    General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators. 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2006) Article accepté pour publication ou publié
  • Thumbnail
    On the Eigenvalues of Operators with Gaps. Application to Dirac Operators 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Article accepté pour publication ou publié
  • Thumbnail
    Distinguished self-adjoint extension and eigenvalues of operators with gaps. Application to Dirac-Coulomb operators 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2022) Document de travail / Working paper
  • Thumbnail
    Variational Methods in Relativistic Quantum Mechanics: New Approach to the Computation of Dirac Eigenvalues 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Communication / Conférence
  • Thumbnail
    Variational characterization for eigenvalues of Dirac operators 
    Dolbeault, Jean; Esteban, Maria J.; Séré, Eric (2000) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo