• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Is the U-NET directional-relationship aware?

Riva, Mateus; Gori, Pietro; Yger, Florian; Bloch, Isabelle (2022-07), Is the U-NET directional-relationship aware?, IEEE International Conference on Image Processing (ICIP 2022), 2022-10, Bordeaux, France

Type
Communication / Conférence
External document link
https://hal.archives-ouvertes.fr/hal-03715361
Date
2022-07
Conference title
IEEE International Conference on Image Processing (ICIP 2022)
Conference date
2022-10
Conference city
Bordeaux
Conference country
France
Metadata
Show full item record
Author(s)
Riva, Mateus
Laboratoire Traitement et Communication de l'Information [LTCI]
Gori, Pietro
Laboratoire Traitement et Communication de l'Information [LTCI]
Yger, Florian cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Bloch, Isabelle cc
LIP6
Abstract (EN)
CNNs are often assumed to be capable of using contextual information about distinct objects (such as their directional relations) inside their receptive field. However, the nature and limits of this capacity has never been explored in full. We explore a specific type of relationship-directional-using a standard U-Net trained to optimize a cross-entropy loss function for segmentation. We train this network on a pretext segmentation task requiring directional relation reasoning for success and state that, with enough data and a sufficiently large receptive field, it succeeds to learn the proposed task. We further explore what the network has learned by analysing scenarios where the directional relationships are perturbed, and show that the network has learned to reason using these relationships.
Subjects / Keywords
XAI; structural information; directional relationships; U-Net

Related items

Showing items related by title and author.

  • Thumbnail
    Template-Based Graph Clustering 
    Riva, M.; Yger, Florian; Gori, P.; Cesar, R.; Bloch, I. (2020) Communication / Conférence
  • Thumbnail
    Geometry-aware principal component analysis for symmetric positive definite matrices 
    Horev, Inbal; Yger, Florian; Sugiyama, Masashi (2016) Article accepté pour publication ou publié
  • Thumbnail
    Geometry-aware stationary subspace analysis 
    Horev, Inbal; Yger, Florian; Sugiyama, Masashi (2016) Communication / Conférence
  • Thumbnail
    Geodesically-convex optimization for averaging partially observed covariance matrices 
    Yger, Florian; Chevallier, S.; Barthélemy, Q.; Suvrit, S. (2020) Communication / Conférence
  • Thumbnail
    Is Cooperation Definitive? Evolution of Relationships within an Industrial District : the Technic Valley 
    Meier, Olivier; Huault, Isabelle; Barabel, Michel (2004-08) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo