• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Handbook of Mixture Analysis

Frühwirth-Schnatter, Sylvia; Celeux, Gilles; Robert, Christian P. (2019), Handbook of Mixture Analysis, Taylor & Francis. 10.1201/9780429055911

Type
Ouvrage
Date
2019
Publisher
Taylor & Francis
ISBN
9780367732066; 9780429055911
Publication identifier
10.1201/9780429055911
Metadata
Show full item record
Author(s)
Frühwirth-Schnatter, Sylvia
Vienna University of Economics and Business
Celeux, Gilles
Inria Saclay - Ile de France
Robert, Christian P.
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Mixture models have been around for over 150 years, and they are found in many branches of statistical modelling, as a versatile and multifaceted tool. They can be applied to a wide range of data: univariate or multivariate, continuous or categorical, cross-sectional, time series, networks, and much more. Mixture analysis is a very active research topic in statistics and machine learning, with new developments in methodology and applications taking place all the time.The Handbook of Mixture Analysis is a very timely publication, presenting a broad overview of the methods and applications of this important field of research. It covers a wide array of topics, including the EM algorithm, Bayesian mixture models, model-based clustering, high-dimensional data, hidden Markov models, and applications in finance, genomics, and astronomy.
Subjects / Keywords
Engineering & Technology; Mathematics & Statistics

Related items

Showing items related by title and author.

  • Thumbnail
    Model Selection for Mixture Models-Perspectives and Strategies 
    Celeux, Gilles; Frühwirth-Schnatter, Sylvia; Robert, Christian P. (2018) Chapitre d'ouvrage
  • Thumbnail
    Computational Solutions for Bayesian Inference in Mixture Models 
    Robert, Christian P.; Celeux, Gilles; Kamary, Kaniav; Malsiner-Walli, Gertraud; Marin, Jean-Michel (2019) Chapitre d'ouvrage
  • Thumbnail
    Some discussions on the Read Paper Beyond subjective and objective in statistics" by A. Gelman and C. Hennig" 
    Celeux, Gilles; Jewson, Jack; Josse, Julie; Marin, Jean-Michel; Robert, Christian P. (2017) Document de travail / Working paper
  • Thumbnail
    Sélection bayésienne de variables en régression linéaire 
    Celeux, Gilles; Marin, Jean-Michel; Robert, Christian P. (2006) Article accepté pour publication ou publié
  • Thumbnail
    Deviance Information Criteria for Missing Data Models 
    Celeux, Gilles; Forbes, Florence; Robert, Christian P.; Titterington, Mike (2006) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo