Deep learning of Value at Risk through generative neural network models : the case of the Variational Auto Encoder
Brugière, Pierre; Turinici, Gabriel (2022), Deep learning of Value at Risk through generative neural network models : the case of the Variational Auto Encoder. https://basepub.dauphine.psl.eu/handle/123456789/23737
View/ Open
Type
Document de travail / Working paperDate
2022Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSLPublished in
Paris
Pages
4
Metadata
Show full item recordAuthor(s)
Brugière, Pierre
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Turinici, Gabriel

CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We present in this paper a method to compute, using generative neural networks, an estimator of the "Value at Risk" for a nancial asset. The method uses a Variational Auto Encoder with a 'energy' (a.k.a. Radon- Sobolev) kernel. The result behaves according to intuition and is in line with more classical methods.Related items
Showing items related by title and author.
-
Turinici, Gabriel (2022-09) Communication / Conférence
-
Turinici, Gabriel (2021) Communication / Conférence
-
Brugière, Pierre; Turinici, Gabriel (2022) Communication / Conférence
-
Araújo, Alexandre; Negrevergne, Benjamin; Chevaleyre, Yann; Atif, Jamal (2019) Document de travail / Working paper
-
Montes Lihn, Jaime (2014-12) Thèse