• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Quantitative Stability for Eigenvalues of Schrödinger Operator, Quantitative Bathtub Principle, and Application to the Turnpike Property for a Bilinear Optimal Control Problem

Mazari, Idriss; Ruiz-Balet, Domènec (2022), Quantitative Stability for Eigenvalues of Schrödinger Operator, Quantitative Bathtub Principle, and Application to the Turnpike Property for a Bilinear Optimal Control Problem, SIAM Journal on Mathematical Analysis, 54, 3, p. 3848-3883. 10.1137/21M1393121

View/Open
MRB2020TurnpikeLinear.pdf (631.6Kb)
Type
Article accepté pour publication ou publié
Date
2022
Journal name
SIAM Journal on Mathematical Analysis
Volume
54
Number
3
Publisher
SIAM - Society for Industrial and Applied Mathematics
Pages
3848-3883
Publication identifier
10.1137/21M1393121
Metadata
Show full item record
Author(s)
Mazari, Idriss
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Ruiz-Balet, Domènec
Fundación Deusto
Abstract (EN)
This work is concerned with two optimisation problems that we tackle from a qualitative perspective. The first one deals with quantitative inequalities for spectral optimisation problems for Schrödinger operators in general domains, the second one deals with the turnpike property for optimal bilinear control problems. In the first part of this article, we prove, under mild technical assumptions, quantitative inequalities for the optimisation of the first eigen-value of −∆−V with Dirichlet boundary conditions with respect to the potential V , under L ∞ and L 1 constraints. This is done using a new method of proof which relies on in a crucial way on a quantitative bathtub principle. We believe our approach susceptible of being generalised to other steady elliptic optimisation problems. In the second part of this paper, we use this inequality to tackle a turnpike problem. Namely, considering a bilinear control system of the form ut − ∆u = Vu, V = V(t, x) being the control, can we give qualitative information, under L ∞ and L 1 constraints on V, on the solutions of the optimisation problem sup´Ω u(T, x)dx? We prove that the quantitative inequality for eigenvalues implies an integral turnpike property: defining I * as the set of optimal potentials for the eigenvalue optimisation problem and V * T as a solution of the bilinear optimal control problem, the quantity´T 0 dist L 1 (V * T (t, ·) , I *) 2 is bounded uniformly in T .
Subjects / Keywords
optimal control of PDEs; shape optimization; shape derivatives; quantitative inequalities; turnpike property; spectral optimization

Related items

Showing items related by title and author.

  • Thumbnail
    The bang-bang property in some parabolic bilinear optimal control problems via two-scale asymptotic expansions 
    Mazari, Idriss (2022) Document de travail / Working paper
  • Thumbnail
    Quantitative estimates for parabolic optimal control problems under L∞ and L1 constraints 
    Mazari, Idriss (2022) Article accepté pour publication ou publié
  • Thumbnail
    Spatial ecology, optimal control and game theoretical fishing problems 
    Mazari, Idriss; Ruiz-Balet, Domènec (2022) Article accepté pour publication ou publié
  • Thumbnail
    Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate. 
    Mazari, Idriss; Nadin, G.; Privat, Y. (2022) Article accepté pour publication ou publié
  • Thumbnail
    Localising optimality conditions for the linear optimal control of semilinear equations \emph{via} concentration results for oscillating solutions of linear parabolic equations 
    Mazari, Idriss; Nadin, Grégoire (2022) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo