• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization

Faigl, Jan; Olteanu, Madalina; Drchal, Jan (2022), Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization, Springer. 10.1007/978-3-031-15444-7

Type
Ouvrage
External document link
https://hal.archives-ouvertes.fr/hal-03827823
Date
2022
Publisher
Springer
Series title
Lecture Notes in Networks and Systems
Series number
533
ISBN
978-3-031-15444-7
Publication identifier
10.1007/978-3-031-15444-7
Metadata
Show full item record
Author(s)
Faigl, Jan
Czech Technical University (Prague, Czech Republic)
Olteanu, Madalina
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Drchal, Jan
Czech Technical University (Prague, Czech Republic)
Abstract (EN)
Assessing the underlying structure of a dataset is often done by training a clustering procedure on the features describing the data. In practice, while the data may be described by a large number of features, only a minority of them may be actually informative with regard to the structure. Furthermore, redundant features may also bias the clustering, whether one speaks of redundancy in the informative or the uninformative features. The present contribution aims at illustrating two sparse clustering methods designed for mixed data (made of numerical and categorical features). The proposed methods summarise redundant features into groups, and select the most relevant groups of features only in the clustering procedure. The performances and the interpretability of the sparse methods are illustrated on a real-life data set.
Subjects / Keywords
Computational Intelligence; LVQ; Learning Vector Quantization; SOM; Self-Organizing Maps; Data Visualization; WSOM; WSOM 2022

Related items

Showing items related by title and author.

  • Thumbnail
    Proceedings of 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM+) 2017 
    Lamirel, Jean-Charles; Cottrell, Marie; Olteanu, Madalina (2017) Ouvrage
  • Thumbnail
    Sparse and group-sparse clustering for mixed data An illustration of the vimpclust package 
    Chavent, Marie; Lacaille, Jérôme; Mourer, Alex; Olteanu, Madalina (2022) Communication / Conférence
  • Thumbnail
    Sparse k-means for mixed data via group-sparse clustering 
    Chavent, Marie; Lacaille, Jerome; Mourer, Alex; Olteanu, Madalina (2020) Communication / Conférence
  • Thumbnail
    Pesticide concentration monitoring: Investigating spatio‐temporal patterns in left censored data 
    Laroche, Clément; Olteanu, Madalina; Rossi, Fabrice (2022) Article accepté pour publication ou publié
  • Thumbnail
    Handling Correlations in Random Forests: which Impacts on Variable Importance and Model Interpretability? 
    Chavent, Marie; Lacaille, Jerome; Mourer, Alex; Olteanu, Madalina (2021) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo