• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Quantitative Stability of Barycenters in the Wasserstein Space

Carlier, Guillaume; Delalande, Alex; Mérigot, Quentin (2022), Quantitative Stability of Barycenters in the Wasserstein Space. https://basepub.dauphine.psl.eu/handle/123456789/23603

View/Open
quantitativestability.pdf (422.8Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
23
Metadata
Show full item record
Author(s)
Carlier, Guillaume
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Delalande, Alex
Laboratoire de Mathématiques d'Orsay [LMO]
Mérigot, Quentin
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
Wasserstein barycenters define averages of probability measures in a geometrically meaningful way. Their use is increasingly popular in applied fields, such as image, geometry or language processing. In these fields however, the probability measures of interest are often not accessible in their entirety and the practitioner may have to deal with statistical or computational approximations instead. In this article, we quantify the effect of such approximations on the corresponding barycenters. We show that Wasserstein barycenters depend in a Hölder-continuous way on their marginals under relatively mild assumptions. Our proof relies on recent estimates that quantify the strong convexity of the dual quadratic optimal transport problem and a new result that allows to control the modulus of continuity of the push-forward operation under a (not necessarily smooth) optimal transport map.

Related items

Showing items related by title and author.

  • Thumbnail
    Quantitative Stability of Barycenters in the Wasserstein Space 
    Carlier, Guillaume; Delalande, Alex; Mérigot, Quentin (2022) Document de travail / Working paper
  • Thumbnail
    Barycenters in the Wasserstein space 
    Carlier, Guillaume; Agueh, Martial (2011) Article accepté pour publication ou publié
  • Thumbnail
    Discretization of functionals involving the Monge-Ampère operator 
    Benamou, Jean-David; Carlier, Guillaume; Mérigot, Quentin; Oudet, Edouard (2016) Article accepté pour publication ou publié
  • Thumbnail
    Numerical methods for matching for teams and Wasserstein barycenters 
    Carlier, Guillaume; Oberman, Adam; Oudet, Edouard (2015) Article accepté pour publication ou publié
  • Thumbnail
    Entropic-Wasserstein barycenters: PDE characterization, regularity and CLT 
    Carlier, Guillaume; Eichinger, Katharina; Kroshnin, Alexey (2021) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo