• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Quantitative fluid approximation in transport theory: a unified approach

Bouin, Emeric; Mouhot, Clément (2022), Quantitative fluid approximation in transport theory: a unified approach. https://basepub.dauphine.psl.eu/handle/123456789/23602

View/Open
BM.pdf (537.1Kb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
40
Metadata
Show full item record
Author(s)
Bouin, Emeric
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Mouhot, Clément
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Abstract (EN)
We propose a unified method for the large space-time scaling limit of \emph{linear} collisional kinetic equations in the whole space. The limit is of \emph{fractional} diffusion type for heavy tail equilibria with slow enough decay, and of diffusive type otherwise. The proof is constructive and the fractional/standard diffusion matrix is obtained. The method combines energy estimates and quantitative spectral methods to construct a `fluid mode'. The method is applied to scattering models (without assuming detailed balance conditions), Fokker-Planck operators and Lévy-Fokker-Planck operators. It proves a series of new results, including the fractional diffusive limit for Fokker-Planck operators in any dimension, for which the formulas for the diffusion coefficient were not known, for Lévy-Fokker-Planck operators with general equilibria, and for scattering operators including some cases of infinite mass equilibria. It also unifies and generalises the results of previous papers with a quantitative method, and our estimates on the fluid approximation error also seem novel.

Related items

Showing items related by title and author.

  • Thumbnail
    Hypocoercivity without confinement 
    Bouin, Emeric; Dolbeault, Jean; Mischler, Stéphane; Mouhot, Clément; Schmeiser, Christian (2020) Article accepté pour publication ou publié
  • Thumbnail
    Exponential decay to equilibrium for a fibre lay-down process on a moving conveyor belt 
    Bouin, Emeric; Hoffmann, Franca; Mouhot, Clément (2017) Article accepté pour publication ou publié
  • Thumbnail
    A new approach to quantitative propagation of chaos for drift, diffusion and jump processes 
    Wennberg, Bernt; Mouhot, Clément; Mischler, Stéphane (2015) Article accepté pour publication ou publié
  • Thumbnail
    Spreading in kinetic reaction-transport equations in higher velocity dimensions 
    Bouin, Emeric; Caillerie, Nils (2019) Article accepté pour publication ou publié
  • Thumbnail
    Quantitative uniform in time chaos propagation for Boltzmann collision processes 
    Mouhot, Clément; Mischler, Stéphane (2010) Document de travail / Working paper
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo