• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - Request a copy

Towards Better Representation of Context Into Recommender Systems

Zhong, Jinfeng; Negre, Elsa (2022), Towards Better Representation of Context Into Recommender Systems, International Journal of Knowledge-Based Organizations (IJKBO), 12, 2, p. 1-12. 10.4018/IJKBO.295080

Type
Article accepté pour publication ou publié
Date
2022
Journal name
International Journal of Knowledge-Based Organizations (IJKBO)
Volume
12
Number
2
Publisher
IGI Global
Pages
1-12
Publication identifier
10.4018/IJKBO.295080
Metadata
Show full item record
Author(s)
Zhong, Jinfeng
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Negre, Elsa
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Context-aware recommender systems (CARSs) are attracting more and more attention from both the academic community and from industry. Users' contextual situations (e.g., location, time, companion, etc.) which can influence their ratings on items, are taken into consideration. Therefore, more accurate and personalized recommendations can be generated. The integration of contextual information in recommender systems to better model users' preferences under different contextual situations is a key research topic. In this paper, the authors propose a new method for representing contextual situations in recommender systems based on the influence of contextual conditions on ratings using Pearson Correlation Coefficient. The authors show the effectiveness of the proposed method compared to state-of-art methods by experiments on three different datasets widely used in CARSs research community.
Subjects / Keywords
Context-aware recommender systems, Decision support
JEL
M3 - Marketing and Advertising
C6 - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

Related items

Showing items related by title and author.

  • Thumbnail
    Towards better representation of context into recommender systems 
    Zhong, Jinfeng; Negre, Elsa (2021) Communication / Conférence
  • Thumbnail
    Towards improving user-recommender systems interactions 
    Zhong, Jinfeng; Negre, Elsa (2021) Communication / Conférence
  • Thumbnail
    Towards improving user-recommender systems interactions 
    Zhong, Jinfeng; Negre, Elsa (2022) Communication / Conférence
  • Thumbnail
    Context-aware explanations in recommender systems 
    Zhong, Jinfeng; Negre, Elsa (2021) Communication / Conférence
  • Thumbnail
    Shap-enhanced counterfactual explanations for recommendations 
    Zhong, Jinfeng; Negre, Elsa (2022) Communication / Conférence
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo