On the Maximum Flow Blocker Problem
Bentoumi, Isma; Furini, Fabio; Mahjoub, Ali Ridha; Martin, Sébastien (2022), On the Maximum Flow Blocker Problem, 23ème congrès annuel de la Société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF 2022), Société Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF)
Type
Communication / ConférenceExternal document link
https://hal.archives-ouvertes.fr/hal-03595343Date
2022Conference title
23ème congrès annuel de la Société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF 2022)Conference date
2022-02Conference city
VilleurbanneConference country
FranceBook title
23ème congrès annuel de la Société Française de Recherche Opérationnelle et d'Aide à la Décision (ROADEF 2022)Publisher
Société Française de Recherche Opérationnelle et d’Aide à la Décision (ROADEF)
Metadata
Show full item recordAuthor(s)
Bentoumi, IsmaLaboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Furini, Fabio
Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” [IASI]
Mahjoub, Ali Ridha
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Martin, Sébastien
Huawei Technologies France
Abstract (EN)
The Maximum Flow Blocker Problem (MFBP) is a bi-level optimization problem where the leader is a blocker problem and the follower is a Maximum Flow problem. The MFBP consists in determining a minimum weight subset of arcs, called interdicted arcs, to be removed from the graph such that the remaining maximum flow is no larger than a given threshold. The non-interdicted graph refers to the one induced by the set of arcs which are not interdicted. In telecommunication networks, a major issue consists in detecting and facing anomalies. In this context, the MFBP has a key role in resilience analysis, since it gives the maximum number of anomalies that can occur such that the network continue to be operational. To the best of our knowledge, the MFBP has not been addressed in the literature but a closely related problem, called the Maximum Flow Interdiction Problem (MFIP), has been largely studied. This problem consists in finding a set of interdicted arcs that respect a given budget and such that the maximum flow, remaining in the non-interdicted graph, is minimized. We prove that the two problems, MFBP and MFIP, are equivalent. In other words, one can transform an instance of the MFBP to one of the MFIP and vice versa. Using this relation, we develop a compact integer formulation for the MFBP and obtain some complexity results.Subjects / Keywords
Combinatorial optimization, Bilevel problem, Blocker, Interdiction, Maximum FlowRelated items
Showing items related by title and author.
-
Cornaz, Denis; Furini, Fabio; Lacroix, Mathieu; Malaguti, Enrico; Mahjoub, Ali Ridha; Martin, Sébastien (2019) Article accepté pour publication ou publié
-
Cornaz, Denis; Furini, Fabio; Lacroix, Mathieu; Malaguti, Enrico; Mahjoub, Ali Ridha; Martin, Sébastien (2014) Communication / Conférence
-
Cornaz, Denis; Furini, Fabio; Lacroix, Mathieu; Malaguti, Enrico; Mahjoub, Ali Ridha; Martin, Sébastien (2019) Article accepté pour publication ou publié
-
Furini, Fabio; Ljubić, Ivana; Martin, Sébastien; San Segundo, Pablo (2019) Article accepté pour publication ou publié
-
Lacroix, Mathieu; Mahjoub, Ali Ridha; Martin, Sébastien; Picouleau, Christophe (2012) Article accepté pour publication ou publié