• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
  •   BIRD Home
  • LAMSADE (UMR CNRS 7243)
  • LAMSADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

Functional connectivity ensemble method to enhance BCI performance (FUCONE)

Corsi, Marie-Constance; Chevallier, Sylvain; de Vico Fallani, Fabrizio; Yger, Florian (2022), Functional connectivity ensemble method to enhance BCI performance (FUCONE), IEEE Transactions on Biomedical Engineering, 69, 9, p. 2826-2838. 10.1109/TBME.2022.3154885

Type
Article accepté pour publication ou publié
External document link
https://hal.inria.fr/hal-03594331
Date
2022
Journal name
IEEE Transactions on Biomedical Engineering
Volume
69
Number
9
Publisher
IEEE - Institute of Electrical and Electronics Engineers
Pages
2826-2838
Publication identifier
10.1109/TBME.2022.3154885
Metadata
Show full item record
Author(s)
Corsi, Marie-Constance
Chevallier, Sylvain
Laboratoire d'Ingénierie des Systèmes de Versailles [LISV]
de Vico Fallani, Fabrizio cc
Yger, Florian cc
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Objective: Relying on the idea that functional connectivity provides important insights on the underlying dynamic of neuronal interactions, we propose a novel framework that combines functional connectivity estimators and covariance-based pipelines to improve the classification of mental states, such as motor imagery. Methods: A Riemannian classifier is trained for each estimator and an ensemble classifier combines the decisions in each feature space. A thorough assessment of the functional connectivity estimators is provided and the best performing pipeline among those tested, called FUCONE, is evaluated on different conditions and datasets. Results: Using a meta-analysis to aggregate results across datasets, FUCONE performed significantly better than all state-of-the-art methods. Conclusion: The performance gain is mostly imputable to the improved diversity of the feature spaces, increasing the robustness of the ensemble classifier with respect to the inter-and intra-subject variability. Significance: Our results offer new insights into the need to consider functional connectivity-based methods to improve the BCI performance.
Subjects / Keywords
Brain-Computer Interface, Ensemble learning, Functional connectivity, Riemannian geometry

Related items

Showing items related by title and author.

  • Thumbnail
    Clinical BCI Challenge-WCCI2020: RIGOLETTO -- RIemannian GeOmetry LEarning, applicaTion To cOnnectivity 
    Corsi, Marie-Constance; Yger, Florian; Chevallier, Sylvain; Noûs, Camille (2021) Rapport
  • Thumbnail
    Ensemble learning based on functional connectivity and Riemannian geometry for robust workload estimation 
    Corsi, Marie-Constance; Chevallier, Sylvain; Barthélemy, Quentin; Hoxha, Isabelle; Yger, Florian Communication / Conférence
  • Thumbnail
    Extending Riemannian Brain-Computer Interface to Functional Connectivity Estimators 
    Chevallier, Sylvain; Corsi, Marie-Constance; Yger, Florian; Noûs, Camille (2020) Communication / Conférence
  • Thumbnail
    Riemannian Geometry on Connectivity for Clinical BCI 
    Corsi, Marie-Constance; Yger, Florian; Chevallier, Sylvain; Noûs, Camille (2021) Communication / Conférence
  • Thumbnail
    Riemannian Classification for SSVEP-Based BCI: Offline versus Online Implementations 
    Chevallier, Sylvain; Kalunga, Emmanuel; Barthélemy, Quentin; Yger, Florian (2018) Chapitre d'ouvrage
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo