Functional connectivity ensemble method to enhance BCI performance (FUCONE)
Corsi, Marie-Constance; Chevallier, Sylvain; de Vico Fallani, Fabrizio; Yger, Florian (2022), Functional connectivity ensemble method to enhance BCI performance (FUCONE), IEEE Transactions on Biomedical Engineering, 69, 9, p. 2826-2838. 10.1109/TBME.2022.3154885
Type
Article accepté pour publication ou publiéExternal document link
https://hal.inria.fr/hal-03594331Date
2022Journal name
IEEE Transactions on Biomedical EngineeringVolume
69Number
9Publisher
IEEE - Institute of Electrical and Electronics Engineers
Pages
2826-2838
Publication identifier
Metadata
Show full item recordAuthor(s)
Corsi, Marie-ConstanceChevallier, Sylvain
Laboratoire d'Ingénierie des Systèmes de Versailles [LISV]
de Vico Fallani, Fabrizio

Yger, Florian

Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision [LAMSADE]
Abstract (EN)
Objective: Relying on the idea that functional connectivity provides important insights on the underlying dynamic of neuronal interactions, we propose a novel framework that combines functional connectivity estimators and covariance-based pipelines to improve the classification of mental states, such as motor imagery. Methods: A Riemannian classifier is trained for each estimator and an ensemble classifier combines the decisions in each feature space. A thorough assessment of the functional connectivity estimators is provided and the best performing pipeline among those tested, called FUCONE, is evaluated on different conditions and datasets. Results: Using a meta-analysis to aggregate results across datasets, FUCONE performed significantly better than all state-of-the-art methods. Conclusion: The performance gain is mostly imputable to the improved diversity of the feature spaces, increasing the robustness of the ensemble classifier with respect to the inter-and intra-subject variability. Significance: Our results offer new insights into the need to consider functional connectivity-based methods to improve the BCI performance.Subjects / Keywords
Brain-Computer Interface, Ensemble learning, Functional connectivity, Riemannian geometryRelated items
Showing items related by title and author.
-
Corsi, Marie-Constance; Yger, Florian; Chevallier, Sylvain; Noûs, Camille (2021) Rapport
-
Corsi, Marie-Constance; Chevallier, Sylvain; Barthélemy, Quentin; Hoxha, Isabelle; Yger, Florian Communication / Conférence
-
Chevallier, Sylvain; Corsi, Marie-Constance; Yger, Florian; Noûs, Camille (2020) Communication / Conférence
-
Corsi, Marie-Constance; Yger, Florian; Chevallier, Sylvain; Noûs, Camille (2021) Communication / Conférence
-
Chevallier, Sylvain; Kalunga, Emmanuel; Barthélemy, Quentin; Yger, Florian (2018) Chapitre d'ouvrage