• xmlui.mirage2.page-structure.header.title
    • français
    • English
  • Help
  • Login
  • Language 
    • Français
    • English
View Item 
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
  •   BIRD Home
  • CEREMADE (UMR CNRS 7534)
  • CEREMADE : Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

BIRDResearch centres & CollectionsBy Issue DateAuthorsTitlesTypeThis CollectionBy Issue DateAuthorsTitlesType

My Account

LoginRegister

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors
Thumbnail - No thumbnail

The Schwarzian octahedron recurrence (dSKP equation) II : geometric systems

Affolter, Niklas; de Tilière, Béatrice; Melotti, Paul (2022), The Schwarzian octahedron recurrence (dSKP equation) II : geometric systems. https://basepub.dauphine.psl.eu/handle/123456789/23360

View/Open
2208.00244.pdf (1.227Mb)
Type
Document de travail / Working paper
Date
2022
Series title
Cahier de recherche CEREMADE, Université Paris Dauphine-PSL
Published in
Paris
Pages
45
Metadata
Show full item record
Author(s)
Affolter, Niklas
Institut für Mathematik [Berlin]
de Tilière, Béatrice
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Melotti, Paul
Laboratoire de Mathématiques d'Orsay [LMO]
Abstract (EN)
We consider eight geometric systems: Miquel dynamics, P-nets, integrable cross-ratio maps, discrete holomorphic functions, orthogonal circle patterns, polygon recutting, circle intersection dynamics, and (corrugated) pentagram maps. Using a unified framework, for each system we prove an explicit expression for the solution as a function of the initial data; more precisely, we show that the solution is equal to the ratio of two partition functions of an oriented dimer model on an Aztec diamond whose face weights are constructed from the initial data. Then, we study the Devron property [Gli15], which states the following: if the system starts from initial data that is singular for the backwards dynamics, this singularity is expected to reoccur after a finite number of steps of the forwards dynamics. Again, using a unified framework, we prove this Devron property for all of the above geometric systems, for different kinds of singular initial data. In doing so, we obtain new singularity results and also known ones [Gli15, Yao14]. Our general method consists in proving that these eight geometric systems are all related to the Schwarzian octahedron recurrence (dSKP equation), and then to rely on the companion paper [AdTM22], where we study this recurrence in general, prove explicit expressions and singularity results.

Related items

Showing items related by title and author.

  • Thumbnail
    The Schwarzian octahedron recurrence (dSKP equation) I : explicit solutions 
    Affolter, Niklas; de Tilière, Béatrice; Melotti, Paul (2022) Document de travail / Working paper
  • Thumbnail
    The Camassa-Holm equation as an incompressible Euler equation: a geometric point of view 
    Gallouët, Thomas; Vialard, François-Xavier (2018) Article accepté pour publication ou publié
  • Thumbnail
    A geometric theory forL 2-stability of the inverse problem in a one-dimensional elliptic equation from anH 1-observation 
    Chavent, Guy; Kunisch, Karl (1993) Article accepté pour publication ou publié
  • Thumbnail
    On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation II 
    Béthuel, Fabrice; Gravejat, Philippe; Saut, Jean-Claude; Smets, Didier (2010) Article accepté pour publication ou publié
  • Thumbnail
    Isoradial immersions 
    Boutillier, Cédric; Cimasoni, David; de Tilière, Béatrice (2022) Article accepté pour publication ou publié
Dauphine PSL Bibliothèque logo
Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16
Phone: 01 44 05 40 94
Contact
Dauphine PSL logoEQUIS logoCreative Commons logo